HIGHER GEOMETRY

 WOODS

THE LIBRARY
OF
THE UNIVERSITY
OF CALIFORNIA IRVINE

IN MeMORY OF
Ito :0. anther

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

HICHER (iEOMETRY

. IN . IN.ALYTO (iEOMETRY

(ilN. INI) ((1)\1'IN

$\therefore . .111$

©he Athrixitm otess

11.1) A

PREFANE

 or antiol. - on -pectal bphos.

The phan of the book ealls for a stady of different romedinate
 aromplige to the momber of dimensions impolved. This leats natmrally 10 a fimal disenssion of 1 -limemsional geometry in an ahstatet abse, of which the partionlar geometries stadied earlier form eon-
 meaning of the line ar and the quatratie equations is stmeded. The stalent is thas primarily drilled is the interpretation of equations, Tht ategures at the same time a knowledge of asefal geometrie facts. The' prine iple of dablit! is comstantly in vew, and the nature of imaginary dements and the eomsentimal elamater of the locens at intinity, depembent mon the type of coimelmates med, are earefnlly explamed.

Numerons exereises for the statent lave bern introdned. In some cases these cary a little farther the disenssion of the text, but rave has bern taken to keep their diftientty whthin the range of the stmdent s ability.

（0）NTENTS

 （iEOMETKY

$-1+110$ 1．1．1．t
1．Cimplimatr 1
\because＇Ttur prim．ifl．of dualit． \because
 \because
1．｜ntinits ：
 1
 ii

 ，
 －
 ！
10．（immalinato of at line of a｜＂moil 11
 1：

 1：；
1：＇Th．・パー ratio $11 ;$
 1
1－1．Projution $\because 1$
 $\because 1$
 －：

 \because
 27
 $\therefore 1$
21．Th． $: \because$
 ：；
$\because \because \quad$ lanto an a linu $\therefore=$
－！1 11 －11：F
 ：if
 $\because 7$
 \because
 $\because ?!$
 ［1）
 11
 11
：）（＇nrs．in froint emorilimato－ ．11
 \therefore ：＇，

 \therefore
 $\therefore!1$
 $1 . .7$
 $1 i$,
 iis
 ت11
 1：

11．（＇いllif＋＂alionに 7
 \therefore ：
 いい
 0.1
 1（1）
 ［11］
 111.

 1107
 1111
 11.
 117

 1：1：
 1：1
 $1: 1$
 $1: 2$
 1：1
－iti．I 1．．．

$81,111, v$! 11,1
\therefore. \quad - 1:i~
 1:3:
 ! 11
 112
 111
 $11, i$
 1.n
 1...
(i.). Tha lineal tran-formation. 1.1
 $1 . i$
1ia. Jan.r-inn 1.in
 $1 \therefore!$
 1.i

 $1+i$
 1:1;
72. 'ltu hilimatre entation 117
 [14:

 171
 17:3
 1.7

 $1-11$
 1-1
 $1 \because$
-1). The Man" $1-$.
 1-
 1!1.;
 1!!
 $1: 7$
 $\because \cdots$

 $\because 11$
 $\because 1$

－r゙ッハハ P14it
 $2: 31$
！！．＞incular｜winl $\because \because 1$
 $\because \because$
 －．！ 1

 －2！！
 $\because: \because$
 ？：．：
 ？？
 －！

104．（ㅁllimations $\because 10$
 $\because 11$
 $\because 11 ;$
 $\because 1!$
101．l＇rejective gerntery on athatrar suriace 3.01
 －3：
lori．（litlon！｜atalla！ －－
 －－in
 2311
 －3！
 ：！i：；

111．l＇rmoil－ni yhur． \because titi
 －！in
 － 1 ！！
 2911
 2.1
114．（い143．． $\because 7$

 $\because \because$
11－Jh．－－1h．．．．． $\because 1$
 $\because-1 ;$
 $\because-$ 。
 $\because-4$
-1.1101 $1 \cdot 11,1$
 21
 $\because!\cdot$
 $2!$
 24
 $2!17$

 （：1） 1
 ：34．；
 ： 11
 20.7
 ： 11 ；
 ：いい
1：3：：The lime：t line anmplex ：311
 ：11
 $\therefore 14$
 $: 17$
 $\therefore 21$
 （2．．
 $\therefore 2 \cdot$
 $\therefore 1$
 \therefore－
1tㄹ．S－ ：3：1］
 ：3：．1！
 ： 2.3
 ：：：；；

 ．if 1
 $\therefore 1 . ;$
 $\because 11$
 $\therefore \|$
 $\therefore 1-$
 ．i！！
 \therefore ． 1
 \therefore ．．．
 두：

$-1+11,1$ $111: 1$
 ：H2
 ：14．
 ：引斤
 ：1つい
lin．Jarqumbunlari！？ ：$:=:$
 ： i－$^{\text {－}}$
 $\therefore \because$
 $\therefore 1$

 が，
 ：3！$!$
 ：！！
 ：3：＂；
 111
 110
 111
 11：i
 $11!$
1N1ON 121

HIGIIER GEOMETRY

(IIADTER I

GENERAL CONCEPTS

1. Coördinates. A ser of " varables. the valum of whely tix a

 dimur-1-mat.

2. The principle of duality. Whent the choment has bexd selerted

 that. Fisn -

 the enimblames and the momperation of a fow fandamental relathas in ath -

3. The use of imaginaries. Betwern the maidthatw of acor-

 Fom - - - *

lime. This is a theorm as far as real puinte and real lime ane

 amy limar "pmation

 wher two stas. The lengh of the side conmentime the vertion

 thathe What vertion are (1), 11), (i, 1), amb (i. - 1).

$$
\because(1) \quad \text { l. }
$$

(i

$$
\dot{N} T: T .
$$

$$
\begin{equation*}
(R 心) T=K(N T)=K, N \tag{1}
\end{equation*}
$$

In the sempe of fommala (1) lat

$$
\begin{aligned}
& \%(1)=l, \quad l(l)=\therefore \quad l(\cdot)=1 .
\end{aligned}
$$

 thesmbel 1. We hate then the eqnation

$$
T T+T+T \quad 1
$$

$$
\begin{equation*}
\because \times \% \text { ン' } \tag{1i}
\end{equation*}
$$

EXERCISES

 li, $i, \quad 1,1 / i$

 - :

 $\because-$

grome of meehamical motions. . Ill trandations in atixed directhon form at shbremp of the group of translations and hemer at subsubleromp of the growh, of motions.

The impertane of the conerpt of gromps in gremetry hise in the fant that it furnishes a moans of elassifying different sotems of grometry. The eloment of the geometry having been chaseth, aty gremp of transformations may be taken, and the propertios of geometric figures may be studied which are maltered by all tamsformations of the group. 'Thus the ordinary geometry of opace comsiders the properties of ligures which are maltered by the group of me hanital mosements.

Any property or contignation which is maltered be the operations of a sroup, is called an inveriant of the group. Thas distame is an insariant of the group of mee hanieal motions, and a cirele is an invariant with respect the theroul) of potations in the phane of the circle about the center of the eirete.

EXERCISES

1. If er is the distanee of a point P on a stratight line. fromia tixed
 pone that the s.t wf transfomatims formed by giving to "and $h^{\prime \prime}$ all furible values form aterold.
 in expmosend hy the equations

$$
\begin{aligned}
& x^{\prime}=x^{2} \cos a-!\sin x, \\
& y^{\prime}=x^{2} \sin a+!\cos x .
\end{aligned}
$$

 form a erony.
3. If (r. If are ('artwian rommanatus in at platr. prowe that the

$$
\begin{aligned}
& x^{\prime}=x^{\prime} \cos a+!\sin x, \\
& y^{\prime}=x^{2} \sin x-!\cos x,
\end{aligned}
$$

(d) mot firm : \&rmpl.

CHAPTER II

RANGES AND PENCILS

7. Cartesian coördinate of a point on a line. ('onsider all prints which lie on a line LK (Fig. 1). These peints are called a pemel in a remers and the line $L K$ is called the aris or the buse of the range. Any point $/$ on lok may he fixed most simply beans of ite distance of from a fixed origin

F11, 1
". the distance leding reckoned positive or negative aceording as I, lies on one side or another of o. We may accordingly place

$$
\begin{equation*}
x=0 \rho^{\prime} \tag{1}
\end{equation*}
$$

and call r the conndinate of P. To any point P corresponds one and maly one real moindinate x, and to any real x comesponds whe and conly one real point l. Complex values of x ane said, as in s3, to define imaginary points on LK.

The coimdinate may be made lomogenems ($\$$ t) bysing the ratior $r: t$, where $\frac{t}{t}=112$. As P recedes indetinitely from (1. t
 that the line has one peint at intinity with the eomernate $1: 0$. Whan the nontomugnems x of (1) is nsod, the print at intinity hate the rainetinate x.

The wimthater we wall the ('artesian wördinate of I becallise (f) it- familiar un in Cartesian grometry.
8. Projective coördinate of a point on a line. On the straight
 ant two constantor, and $k_{\text {a }}$. Then if 1 is any mint on LK We maty take as the wnimlinate of I the ratio $x_{1}: x_{2}$, where

$$
\begin{equation*}
r_{1}: r_{2}=k_{1} \cdot 1 / \prime: k_{2} \cdot I I^{\prime} \tag{1}
\end{equation*}
$$

[^0]in which the distanese $A I^{\prime}$ and $B P^{\prime}$ are positive or negative atemed．
 It is evident that the correspombene between real pints on L K and real vahtes of the ration $x_{1}: x_{2}$ is ome to ome．（＇omplex values

The（＇artesian eoindinate of the preceding artiele may be mat sifered as a seredial or limiting ease of the kind just wiven．For if in（1）we phat $i_{1}-1$ ，allow the peint F to remede to intinity．
 that the limit of h_{a} ． 1 I＇mamins finite，equations（ 1 ）wive the

 We saty that the lime hats one perint at intmits．

It is th he noticed that the ratio（whirh alome is（essential）of the comstants i_{1} amd i_{2} is determmed be the coundinate of atny one print．Sime this ratio is arbitaty the coumdinate of any print may be assmmed arhitarily after the peints of referene are tixed．

In partienlar any point may be given the comedinate $1: 1$ ．This ［mint wr shall wall the weit ferint．The erördinate of 1 is $11: 1$ and that of l is $1: 0$ ．Sinee the mit print and the puints of reforence

The mändinate of this sedion we shall wall the projertive

EXERCISES

9．Change of coordinates．Thr mum siematal hathe from whe－－

 ghims of reforemee 1 and l, with eretain constants k_{1} and k_{2}, and
 mint wemed whe printa of referenee I^{\prime} :and l_{i}^{\prime}. with comstants k_{1}^{\prime} atml l_{2}^{\prime}.

F1.. 2

$$
r_{1}: x_{2} k_{1}(t-d): h_{2}(t-l), \quad r_{1}^{\prime}: r_{2}^{\prime}-l_{1}^{\prime}\left(t-a^{\prime}\right): k_{2}^{\prime}\left(t-l_{\prime}^{\prime}\right)
$$

The elimination of trom these eymations gives relations of the finll

$$
\begin{align*}
& \rho \cdot r_{1}=u_{1} r_{1}^{\prime}+n_{1} r_{3}^{\prime} \\
& \rho \cdot r_{2}=\beta_{1} \cdot r_{1}^{\prime}+\beta_{2} r_{2}^{\prime} \tag{2}
\end{align*}
$$

Wheh are the required formmats for the dange of coindinates.

 wi $r_{1}^{\prime}: r_{2}^{\prime}$. in jartionlar to the three values $0: 1,1: 0,1: 1$. For when $r_{1}^{\prime}: r_{2}^{\prime}=11: 1$ we have $r_{1}: x_{2}=x_{2}: \beta_{2}$; when $r_{1}^{\prime}: x_{2}^{\prime}=1: 0$ we have

It is whe ions from the forequins that if the reforence points. A

 in "ynations (\because) Nhmlal (.0ntain $x_{1}^{\prime}: r_{2}^{\prime}$.

 $\lambda=9$ amd $\lambda \ldots$ s. mpertively. Then equations (\because) berome

$$
\begin{align*}
& \rho r_{1}=y_{1}+\lambda z_{1} \tag{:i}\\
& \rho \cdot r_{2}=y_{2}+\lambda z_{2}
\end{align*}
$$

 $\left\|+\theta_{1}:\right\|_{4}+\lambda \because_{n}$

EXERCISES

 th that in lis. \because.

 ton 1 aml th. mat print 1 mit- from 1.

10. Coördinate of a line of a pencil. (masider all stratht limes which lie in a phane and pasion theng the samm puint (Fig. in). Smbline fomm aferril. the common puint beine ablent the rerta "f the penedi.

 but in that (:ase the linte (1) womld hase an intinite mamber of coiimio mates differing by maltiphes of $\because \pi$. We maty make the relation between at line and its aniomlinate ond tw whe hy taking as the cöndinate a quantity a defimed by the empation

$$
\begin{equation*}
r=k_{i} \tan \theta . \tag{1}
\end{equation*}
$$

Where k in an arbithary renstant. Thest $r=0$ is the line $11 / 1, r=x$ is

F1....; the line at right angles to $101 /$, and

$$
r_{1}: r_{2}=l_{1} \times 11.111 l_{1}: l_{2}+i n 1 \text { lill }
$$

$$
(\ddot{-0})
$$

 (\because) mas be writull

$$
\begin{aligned}
r_{1}: r_{2} & =l_{1} \sin (\theta-2): l_{2}-\left(\begin{array}{l}
1 \\
(A-3) \\
\\
\end{array}\right.
\end{aligned}
$$

When r is detimen her (1).

 with , : r_{2} b a bilimar mation of the form

$$
\begin{aligned}
& \rho \cdot r_{3}=n_{2} r_{1}^{\prime}+n_{2} r_{1}^{\prime} . \\
& \rho r_{2}=B_{1} r_{1}^{\prime}+r_{r} .
\end{aligned}
$$

Thin followis fom the fant that buth $r_{1}: r_{2}$ and $r_{1}^{\prime}: r_{2}^{\prime}$ ate conmeeted wish er he at mation of the firm (: $:$).

Since a tramemation of enerdinates is efferted either by elange
 follows that any tansormation of cördinates is expessed bey a relation of form (t). Ther enefticients of the tamsomation are

$$
\begin{align*}
& \rho \cdot r_{1}=!_{1}+\lambda z_{\cdot} \tag{r}\\
& \rho \cdot r_{2}=!_{1}+\lambda z_{2} .
\end{align*}
$$

11. Coordinate of a plane of a pencil. ('msider all phans whimb

 The coniontinate of a plane of the sheal may the Whainell he tirst assming two phates of refors (mee on and b and a dixad comstant k. Then, if l^{\prime} is any plane of the fome and ($1, \ldots$) means the
 mate of f as the ration $r_{2} x_{2}$ given the erpations

$$
\begin{equation*}
r_{1}: r_{2}=h_{1} \sin (1, p): k_{2} \sin \left(h_{0}, p_{1}\right) . \tag{1}
\end{equation*}
$$

It in whions that if a plame in lue passed perfentiontar th the ax is of the Jemeit the phame of
 The angla hetwern two lines of this pernit is the

F.... 1 Whan anger of the two phanes in whith the two lines the. Henere the wïndinate $r_{1}: r_{\text {a }}$ detine l in (1) is alsw the meimelinate of the

 Whan of the [womil may be writen

$$
\begin{align*}
& \rho r_{1}=y_{1}+\lambda r_{r} \\
& \rho r_{2} r_{2}+\lambda z_{r_{0}}
\end{align*}
$$

('HADPER III

PROJECTIVITY

12. The linear transformation. We shall now romsiler the onbstitution

$$
\begin{align*}
& \rho \cdot r_{1}^{\prime}=a_{1} r_{1}+\beta_{1} r_{2}, \\
& \rho \cdot r_{2}^{\prime}=n_{3} r_{2}+\beta_{2} r_{2}
\end{align*} \quad\left(r_{1} \beta_{2}-n_{2} \beta_{1}=0\right)
$$

 formation in the seme of 冬. There $x_{1}: x_{2}$ are to be interpered as the enortinate of an element of a methmensmal extent and $r_{1}^{\prime}: r_{2}^{\prime}$ as the ceïrdinate of the transfomed atement of the same on
 freme extents, the elements ned mot be of the same kimb. For example, the transmontion (1) may express the tranformation of peints into lines, of pints into planes, of lines into planes. ant sin.

 he λ^{\prime}, and changing the form of the comatants. We hame

$$
\lambda^{\prime}=\begin{align*}
& n \lambda+\beta \tag{}\\
& \gamma \lambda+\delta
\end{align*} \quad(n \delta-\beta \gamma=11)
$$

 Es. A. 10.11 or may the the λ lased in the formulas of s! ! 11. How eremerally still, λ may he aly ghantity which am fur mat
 int his text.

$$
\begin{array}{lll}
\lambda & \delta \lambda^{\prime} & 3 \tag{:3}\\
y \lambda^{\prime}+18
\end{array}
$$

Henee to an element λ^{\prime} eomereponds one and only we clement λ.
 - loments λ^{\prime} is ant to ant.

Any oldmont whose coibrlinate is mehanged by the transformation is called a fired elfoment of the transformation. This
 prints of the same ratuge or lines of the same peneil, or phanes of the same pemeil. If, for example, λ and λ^{\prime} are points of the samer rangre the point λ is transormed into the point λ^{\prime}, whioh is in eromeral a different point from λ, but the fixed points are murhamered.

T'י fime the fixed elements we have topht $\lambda=\lambda^{\prime}$ in (2) or in (3). There results

$$
\begin{equation*}
\gamma \lambda^{2}+(\delta-\pi) \lambda-\beta=0 . \tag{4}
\end{equation*}
$$

Any limar tremsfarmation has, aceordingly, turn fixed foments, whinh may be distinet as comeident.

If n, β, γ, and δ are real mombers, and real coinclinates λ and λ^{\prime} comrepond to real plements, we may make the following chasitiontion of the linear transformations:
(1) $(\delta-\alpha)^{2}+4 \beta \gamma>0$. The fixed elements are real and distinct. The transommation is called hyperthetie.
$(\because)(\delta-a)^{2}+t \beta \gamma<0$. 'The fixed elements are imaginary with (onjugate imatimary coördinates. The tramsformation is ealled - Mliptic.
(\because) $(\delta-a)^{2}+\mathfrak{t} \gamma=0$. The fixed points are real and comodent. 'The transformation is called purathotir.

 ber the rghation

$$
\begin{equation*}
\lambda^{\prime \prime} \quad \frac{\left(\lambda^{\prime}+\beta\right.}{\gamma \lambda^{\prime}+\delta}=\frac{\left(n^{2}+\beta \gamma\right) \lambda+\alpha \beta+\beta \delta}{(1 \gamma+\gamma \delta) \lambda+\beta \gamma+\delta^{2}} \tag{i}
\end{equation*}
$$

the wher that $\lambda^{\prime \prime}$ shmald ahways he the same as λ it is heressaty and sumbernt that the equation

$$
(1 \gamma \gamma+\gamma \delta) \lambda^{2}+\left(\delta^{2}-2^{2}\right) \lambda-(n \beta+\beta \delta)=11
$$

shonld the trin for all vahes of λ. The eoeffecients α, β, γ, and o mast then satisfy the equations

$$
\begin{align*}
a y+y \delta & =0, \\
\delta^{2}-n^{2} & =0, \\
n \gamma+\beta \delta & =11 .
\end{align*}
$$

The seeond equation gives $\delta= \pm \pi$. If we take $\delta==4$ ther other tworghations give $\gamma=0, \beta=0$, and the transformation (1) rednefes (t) the identieal transformation $\lambda=\lambda^{\prime}$. We mast therefore take $\delta=-\alpha$, and all three equations (6) are satisfied.

The transformation then beoomes

$$
\begin{equation*}
\lambda^{\prime}=\frac{a \lambda+\beta}{\gamma \lambda-a} \quad\left(a^{2}+\beta \gamma=0\right) \tag{7}
\end{equation*}
$$

A linear tramsformation of this type is callent immatory. It has the property that if repeated once it prodnees the intentical transformatim. The correspomener between the elements λ and the transformed elements λ^{\prime} is called an imondution.

EXERCISES

1. Find the transformation which transforms $0.1 . x$ into $1, x, 0$, Pepertionly. What are the fixed peints of the transformation?
2. If r is the ('artonian comorlinate of a point on a stratirht line, determine the limear tams fommation whinh interehatere the origin and the peint at infinity. What ate the fixed perinto of the thand fomation? In all anch trans formations form a group:
3. If r is the ('aptesian comblinate of a primt on a straight line小etermine the tansfomation whieh has onls the orisin for a tixent print and akn that whirh hat only the print at intmity for at tion

4. If x is the ('artesian momblate of a pemt on a staisht lime,

 ty" $\lambda^{\prime}-\lambda+h$, amd ont of the ty" $\lambda^{\prime}=\frac{1}{\lambda}$.
5. Shas that any tranfomation with two distime fivel fommots " and / (an the writtoll $\frac{\lambda^{\prime}}{\lambda^{\prime}-3}=1: \frac{\lambda-\prime \prime}{\lambda-1}$.
i. Show that ang tamsumation with a simgle fixed elomont a

6. Shas that all tran-manations with the same fixat flements fom atomp.

 and \because ate the two puints in whirh any one of the rirelds merts the

7. Show, anmersely to Ex. 10. that any mshatory tamfomation may ly
8. The cross ratio. The linear tamsfommion entains three

 arombel values of λ wath be made to conveqund to atly there anhtrarily asomed values of λ^{\prime}. la other worls.

Ton 4 rite the transformation in terms of the corimdinates of three

$$
\begin{array}{ccc}
\lambda^{\prime} & \lambda_{1} & \lambda \frac{\lambda}{}-\lambda_{2} \tag{1}\\
\lambda^{\prime}-\lambda_{1}^{\prime} & & \lambda=\lambda_{1}
\end{array}
$$

$$
\begin{gather*}
\lambda^{\prime}-\lambda_{2}^{\prime}=n_{1}^{\lambda_{1}} \frac{\lambda_{1}}{2} \\
\lambda^{\prime}-\lambda_{1}^{\prime}
\end{gather*}
$$

$$
\begin{array}{llllll}
\lambda^{\prime} & \lambda_{1}^{\prime} & \lambda^{\prime} & \lambda_{1}^{\prime} & \frac{\lambda}{-}-\lambda_{2} \cdot \lambda_{2}-\lambda_{1} \\
\lambda^{\prime} & \lambda_{1}^{\prime} & \lambda^{\prime} & \lambda_{2}^{\prime} & \frac{\lambda}{1}-\lambda_{1} & \lambda-\lambda_{2}
\end{array} \quad \quad, \because,
$$

Whath is the ragnirat mantormation.
 from (\because) ,

$$
\begin{array}{cccccccc}
\lambda_{1}^{\prime} & \lambda_{1} & \lambda_{3}^{\prime} & \lambda_{1}^{\prime} & \lambda_{1} & \lambda_{2} & \lambda_{1} & \lambda_{1} \\
\lambda_{1} & \lambda_{1}^{\prime} & \lambda_{3}^{\prime} & \lambda_{2}^{\prime} & \lambda_{1} & \lambda_{1} & \lambda_{3} & \lambda_{2}
\end{array}
$$

or. What a sligit rearmamement.

$$
\begin{array}{cccccccc}
\lambda_{1}^{\prime} & \lambda_{i}^{\prime} \cdot \lambda_{2}^{\prime} & \lambda_{i}^{\prime} & \lambda_{1}-\lambda_{2} & \lambda_{2} & \lambda_{4} . \\
\lambda_{1}^{\prime}-\lambda_{1}^{\prime} & \lambda_{2}^{\prime} & \lambda_{3}^{\prime} & \lambda_{1}-\lambda_{i} & \lambda_{1} & \lambda_{3} \tag{i}
\end{array}
$$

$\lambda_{1} \cdots \lambda_{8}, \lambda_{2} \cdots \lambda_{1}$
$\lambda_{1}-\lambda_{1} \quad \lambda_{2} \quad \lambda_{1}$

 Fymation (1) wiablishesthe themem:

 but alse on the maler in which they are taken. Now four thime

 fossible umes rathos, that the six distint whes ary

$$
\therefore \quad 1,1-i, 1, i, i, i
$$

Wharer is ally whe of them.

 H14 mblant

$$
\begin{equation*}
\left(r_{i}^{\prime}, l_{i}\right) \quad \lambda_{1} \quad \lambda_{i}, \lambda_{1}, \lambda_{i} \tag{1i}
\end{equation*}
$$

 is of importane and is given in the following theorem:

$$
\left(I(!, I)-\left(I S, I^{\prime}(!)=\frac{\lambda}{\mu}\right.\right.
$$

To prose thin take $\lambda_{1}=0$ for the element $I, \lambda_{2}=-\infty$ for the element of $\lambda_{3}=\lambda$ for the wement i, and $\lambda_{3}=\mu$ for the element \therefore and sabstintte in (i).

If λ is the ('artesian roiembinate of a point on a straight line, then $\lambda_{1}-\lambda_{3}=I_{3}^{\prime} I_{1}^{\prime}, \lambda_{1}-\lambda_{4}=I_{4}^{\prime} I_{1}^{\prime}, \lambda_{2}-\lambda_{3}=I_{2}^{\prime} I_{2}^{\prime}, \lambda_{2}-\lambda_{4}=I_{4}^{\prime} I_{2}^{\prime}$, and
 segments into whith the line $I_{3}^{\prime} I_{i}^{\prime}$ is diviled her l_{1} amb the ratio of the sergments into which $I_{i s}^{\prime} I_{4}$ is divided $\mathrm{l}_{\mathrm{g}} I_{2}^{\prime}$, and forming the ratio of these ratios.
14. Harmonic sets. If a poss matio is epmal to -1 , it is called

$$
\left(I_{i}^{\prime} I_{2}^{\prime} I_{i}^{\prime} I_{i}^{\prime}\right)=-1
$$

the fonde fements form at hamonie set, amd the points P_{1}^{\prime} and P_{2}

 line from a hammate sut, then

$$
\begin{array}{ll}
I I \\
I_{4}^{\prime} & I_{2}^{\prime} \\
I_{4}^{\prime}
\end{array}
$$

This Ames that the two perints in a harmonie sed divide the dine
 int lla- sallue ratio.

EXERCISES

1. Show that the woss ration of any puint, the tamsformed pums.

 whents.

$$
\stackrel{\ddot{ }}{\lambda_{2}-\lambda_{1}}=\stackrel{1}{\lambda_{;}} \quad \lambda_{1}+\begin{gathered}
1 \\
\lambda_{4}
\end{gathered} .
$$

$$
\begin{gathered}
1-l: \\
\lambda_{2}-\lambda_{1}
\end{gathered}=\stackrel{1}{\lambda_{1}-\lambda_{1}-\stackrel{l}{\lambda_{3}-\lambda_{1}} .}
$$

4. Whate the transomation by which cath peint on a line is trans-
 $\lambda==$. What are the tixerl perints of the thatsformation:

 punt pais thefined ly the erpation

(1msider two (alsis:

 lime is thate.
5. 'omsum the peint par defined by the equation

$$
n_{1} r_{1}^{2}+2 "_{12} r_{1} r_{2}+"_{\ldots, \ldots} r_{2}^{2}=0 .
$$

 respents a definite pelar puint and that any perint is the pular perint wf a thefnite print $\%$ show that a penint and its polat ane hammate conjugates with reseret to the penint patis. What happens the thene

15. Projection. 'Toro mo-tlimensiomal extents are sall to be int fremertion if the elements of the two extemts are bronglat into (a)respontenee hy means of a linear relation.

$$
\lambda^{\prime}=\begin{aligned}
& n \lambda+\beta \\
& y \lambda+\delta
\end{aligned} \quad(10 \delta-\beta \gamma=1)
$$

 monhtion (S 1:) From the detmition the following theorems mat be momediately dodmed :

 fremertian matent.

 1. 1.1 . 1 s .

EXERCISE

16. Perspective figures. A simple rase of a projeetivity is that called a perspectivity, now th be defined. Soming that wr hatre w (b) with pencils of different kinds, aceording as they are marte up of peinte, lines, or planes, we sity that iwn pernoils of diflement kinds ame in forepatior when they are mate to mompend in surh a matame that rath ehoment wit whe permil lies in the corre -pentinger ehement of the others. Tion pernils of the same kimel

11... is are in fropertion when eath is

\therefore pernil of pints and whe of limes are therefore in fropertive

 this relation a projectivity. mote that

 promb of puints and of the lines of the pernil of lims. Sinco any Whatse of womelimate of wher of the pramis is expmesiod hey a limear relation, fla twa prombla statily the definition of promer tiar tigumes.
 are in perpuedian when thy ame parapertive the the sallue promit

1'... ! limes emmertime (enmapmatime

Two pemilo of lims are in perspective when they are in per--pertive the same range of points as in Firg. 7. The points of imtersertion of correspenting line of the two peneils then lie (10) the simbe straight lime. That Whe relation is a projentivity follow- from 10 , s 1%

From these definitions the following the orems are casily powed:
I. If rimer limes uf a pencil uf limes are rut lig cuy trensecersel,
 intersertion is indeperdent af the

Fli. 7

 attin oft the finer ammerting lines is indepmendent of the pmsition ut the

The last iwn theorems follow from InI, s. 15.

 a frojorisit.

EXERCISES

 that it is inturacted hes an artherary lime in not more than f wo pemts.

 rarre. show that not mone that two of thene lines patso through ans

 phate in at rurve surf ats is detine in lix. 1.
4. Shas that if the line rommetine the wrime of two frojertine

5. Fhow that if the Jwint of intersertion of the hases of two praje ofive

6. (iiven any two projertive manse of pemts. ('onnert any pair of

 sution of two comaphmine limes and thonsh it draw any iwn lams

In fant any mave whether in the plathe or in spate is a one-
 Aethed in a variety of ways. ()ne of the simplest methoels is 10 take the hemph of the rate mearmed from a tixed point to a variable print as the wämbate of the latter fuint, lat other methots

 nate of a puint on the virele the enometinate of the line of the promil whirla parese thomerh that print.

 (1) at fixed eorve and whose radii are matuely determined bey the foritions of their centers.

In like mamme the ghete maty be kaken as the thament at a

$$
\lambda: \lambda_{1}+i \lambda_{2}
$$

the thene of fumetions of a complex varable. This hes completely omside of the ramge of this bewh.

 phate we have at to-dimememal extent if seal values. That is,

 in this hak comm dimensinns in terms of quantites carch of whide may then complex valmes.

Cimether the complex qumbty

$$
\begin{equation*}
\lambda_{1}+\lambda_{0} \tag{1}
\end{equation*}
$$

Whow λ_{1} and λ_{2} an mal, atmilet

$$
\lambda_{1} \quad i_{1}(t), \quad \lambda_{2}=f_{2}^{\prime}(t),
$$

t being a wal quantity and the funtins mal functions.
Then as t varios, the peint λ tane ont at atro on the complex phan which is oncolimensomal. If λ is interperem as the cündi-
 dimerianal extent of pints on the staight line. wheh do not of

 them of real print: $\left(\lambda_{0}=0\right)$, the thead of pre inaginary peints ($t=1$). Hhe thead of primis $\lambda(1+i)$ the spmate of whese comatimane is pure imaginary, and ohers whish con the formad at !hanite.

REFERENCES

 the fithowine shot toxts:
 - mam.

 POINT AND LINE COORDINATES IN A PLANE

18. Homogeneous Cartesian point coördinates. Let $11 . \mathrm{d}$ and 11$\}$

$$
\left(1.1{ }^{\prime \prime} \quad . M I^{\prime}=\frac{!}{t} \quad\right. \text { (1) }
$$

 repend to athe pair of ratios we need tor mak the followimes

 pmint (s:

19. The straight line. It is a fumbmamal promition in amalytio gronmery that ant limar eynation

$$
1 r+13+1+11 \quad(1)
$$

coirethates satisfy and egtation of the form (1), in which the condidents are all real and 11 and l are mot both \%ero. For proof of the theorem we refor to ang textbonk on analytic geometry.

The proposition is a defintion as far as it refers to imagimary pernts, to equations with emplex eotherients, or to the equation $t \ldots 0$. In this semse " staight line" means simply the totality of pates of matios $r:!t: t$ wheh satisfy ergation (l).

In partionkar, the equation $t=0$ is satisfied by all peomts at intinity. Hemer all pmints at infinity lie an a straight lint. callod the line at intimit!.

If one or more of the enefledents of (1) are eomplex the straisht line is said to be imaginary. It is interesting to note that am imet-
 let us plate in (1)

$$
A=r_{1}+i \pi_{2}, \quad r=l_{1}+i h_{2}, \quad r=r_{1}+i r_{2}
$$

Then (1) is satistied by real values of r, $1 /$, and t when and only whell

$$
\begin{aligned}
& a_{1} r+t_{1} y+r_{1} t=0 \\
& u_{2} r+t_{1} y+r_{y}=0 .
\end{aligned}
$$

These equations have one and only one solution for the ratios $x: y: t$ amb the thenrem is proved. (ol contse the real perint maty be at intinity.
('maviter mow any two straght lines, mal or imaginary, with the equations

$$
\begin{aligned}
& 1_{1} r+B_{1} y+r_{1} t=0 . \\
& A_{2} r+B_{2} y+r_{2} t=0 .
\end{aligned}
$$

These equations have the maigue solution

$$
r: y: t=l_{1} r_{2}-l_{2} r_{1}: r_{1} A_{2}-r_{2} l_{1}: l_{1} I_{2} \quad I_{2} I_{1} .
$$

Which efperentic the enmmon perint of the two lines. This print is at intinity when $I_{1} f_{2}-I_{2} f_{1}=0$, in which case, as is shown in athy
 the limes are matrimaty they will he abled parallel ley defintion. W゙ロ May - ay

If (. \because, y_{n}) is a tixed print on the line (1). we hate

$$
1\left(r-x_{1,}\right)+l(!-!) \quad 1:
$$

whence

$$
\begin{array}{ccc}
4 & -! & -1 \\
r & n & \\
r
\end{array}
$$

 real or imatrinary marle θ surh that

$$
\tan \theta-\frac{1}{i}
$$

Tlum, from expation (\because)。

$$
\begin{array}{ll}
r-r & 11-y_{n} \\
\sin \theta \theta & \sin \theta
\end{array}
$$

Sy phatine these equal matos equal tor we have as amblat

$$
\begin{align*}
& r=r+r \cdot n \theta \\
& y=y_{n}+r \sin \theta
\end{align*}
$$

There are the pamanetre egnations of the stratight line. In them

$$
\begin{equation*}
r=\left(r-r_{0}\right)^{2}+\left(.11-!_{0}\right)^{2} \tag{t}
\end{equation*}
$$

This work hatas down only when $t^{2}+\operatorname{lom}^{2}=0$. In that mat
 tion (1) taker flat form

$$
r=i!+r \quad 0 . \quad(\therefore)
$$

$$
\tan \theta-\ldots i
$$

 In later. Equation (\because) beromme
ani

$$
\left.i \quad \begin{array}{lll}
1, & r_{11}
\end{array}\right)^{2}+1!\quad!111
$$

 patt in the ontometry of the phate.

EXERCISES

1. Prome that throngh esery imamary point oros one and only one real lime.

2. Prose that if a real point lies on an imasinary line it lies also on
 (myjuata imarinary to thase of the tirat lines).
3. If the mal formula for the amore betwent two lines is extemberl to intrimary lines, show that the angle hetwern a minimm lime and another line is infinte and that the angle betworn two minimum lines is induthminate.
4. (iten a pemoil of lines with its vertex at the origin. lorose
 a comstant atrex, the fixed prints of the projertion are the miniman lines.
5. Show that a parametrie form of the erpatioms of a minimm line is

$$
\begin{aligned}
& r=r_{n}+t \\
& y=y_{n} \pm i t
\end{aligned}
$$

where t is a parameter, not a lenoth.
20. The circle points at infinity. The cirote is defined analytially hy the eyuation

$$
\begin{equation*}
a\left(r^{2}+n^{2}\right)+2 f^{2} r t+2!!!t+r t^{2}=0, \tag{1}
\end{equation*}
$$

 are comstants and (r., !) are replared loy r: ! : t.
 twn fuints $1: i: 11$ ant $1: \quad i: 0$, mo matter what the values of

 whtere line at intinity and, in fartionlan, the virele prints. Ilemere
 "t intimit.".
 satify the equationt an. Their diatame from the eroter of the
circle is not. howerer, intinite. The distance betwern twor fuint.

$$
d-\quad\left(x-r_{0}\right)^{2}+\left(!-y_{n}\right)^{2}
$$

whith call be written in hommeremons coindinates as

$$
l=v\left(r_{n}-r_{n}\right)^{2}+\left(y_{t} t_{n}-y_{n}^{t}\right)^{2}, \quad(\because)
$$

This prohape makes it easior to understam the statement that these frints lie whall areltes.
 (an be writhon (ompare equation (\because))

$$
\left(. r t_{n}-r t\right)^{2}+\left(y t_{0}-!!t^{2}-r^{2} t_{1}^{2} t^{2}=11 .\right.
$$

When $r=0$ this equation beromess
 and radias zero. When the center is at real print the diele (\because) fombans muther real peint and is anowelingly often ralled a foint rione A print arele, howerer, whtams other matinary pints.

$$
\left[\left(r_{0}-r_{0}\right)+i\left(n_{j}-n_{1} t\right)\right]\left[\left(r_{0}-r_{t}\right)-i\left(n_{0}-!t_{1}\right)\right]-1,
$$

whirh is equivalent th the two limear equations

$$
\begin{align*}
& t_{11}(r+i!)-\left(r_{4}+i!\right) t=0, \tag{t}\\
& t_{11}(r-i!)-\left(r-i y_{1}\right) t=0 .
\end{align*}
$$

 "iral. puint.s at intimity.

 visible from equations (t). It is whions that themerh ant format
 at intmity.

EXERCISES

1. Show that an masmary diele may rontan cither no real point, Ghe real puint, or two real pints.
 tixed puint. shan that the fumil eontains two point oiteles and mo
 that the peint andes ham mad renters when the tiam fuints of then
 have imasiaty maners when the fixed pernta are reat.
 tament at that fuint to a fixed line, where are the feint direles amb the stmatht lime of the fermoll"
2. The conic. An eqpation of the seeond dereree,

$$
\begin{equation*}
\left(1 r^{2}+\because h n \cdot!+l!y^{2}+2 f^{2} \cdot t+2!!!t+t^{2}-0,\right. \tag{1}
\end{equation*}
$$

 - waight line in two peints. For the simultancons sulation of the eqpation (1) and the eghation

$$
.1 r+13+1 t=0
$$

 aml 1 :

Let tine eftation (1) be writton in the momhomorements fom号 plang $t=1$, and let (\because) he written in the form (

$$
x=r_{1}+r \cos \theta, \quad y=y_{n}+r \sin \theta
$$

 of the statinh lime (\because) with the rarve (1) will he fomml lys sumstimtiner in (1) the values of r and ! given by ($:$) . There reanlis

$$
\begin{equation*}
L^{2}+\ddot{\prime} \cdot I H+N=11 \tag{1}
\end{equation*}
$$

This will heremo for all values of θ when r_{0} and !n satisf! the

The conice (1) is att hy the lime at intinity $t=0$ in twormint for whirh the ratio. of: $/$ is given by the equation

$$
\left(1, i^{2}+\ddot{-} h!!+1, y^{2}=10\right.
$$

 tion may be mathe mont rlextly, as follows:
(1) $h^{2}-a b<0$. The ramb rat the lime at intmit! in two dintimet

 print wo at intinity, or is atintiol ly moral print.

 riment pomats. It is a parathata, or tworathel lines, on two

 $f^{\prime} \cdot+!!!+\cdots=0$.

EXERCISES

 is hinatall by the print.

 tion ift the tancont Itme in

[^1] be thee tised staght lines of refereme forming a trianste and het

 dientar distanme from P th the there lines of reference. Algehraic sigus are to he atlathed torath of these distances acoording to the sula of the line of reforence on whin! $/$ lies, the positive side of eath line hemes anchmed at pleatiore.
'Thre roindinates of I are dedimed as the ratios of three pratutities r_{1}, r_{2}, r_{a} sullols that $r_{1}: r_{2}: r_{3}=h_{1} l_{1}: l_{i 2} r_{2}^{\prime}: l_{i} r_{3}$. (1)

It iserident that if 1 is siven. its coiertinates are uniquely determine l. (omversely, lat real ratios $0_{1}: "_{2}:{ }^{\prime}$, be assimed for $r_{1}: r_{2}: x_{3}$. The matio $x_{1}: r_{2}=a_{1}: \sigma_{2}$ furninhesthe contition $!^{\prime \prime}=$ contP_{2}

Fri, 8 stant. Which is satisfled by any

 intersed. the print of intersedion is I, whith is thas maturely determinted by its coundinates.

In atse these two lines are parallel wa may extend ontroimbe
 of intints. 'Thene are in fatt, the limiting ratios approathed hy

 When the" f"int with ha maindinates $1: 1: 1$ in fixed. 'This puint wr thatl call the mait funt, amb sume the fix ate athitaty it may he

 There is att exception m by when P^{\prime} is ant the line $/$ a' $^{\prime}$ and remains there as la^{\prime} |townes the line at infinity: in this

 dilates $r_{1}: r_{2}: x^{\prime}$ beroblle the roïndinates.r:y:t of
23. Points on a line. If

 (1):1/ forint one the strucisht lime
 minim! them are ! $1+\lambda z_{1}: y_{2}+$

 If, it is evident from similar thimbles that
whore

$$
\begin{gathered}
l_{1}^{\prime \prime} \quad l_{1}^{\prime}=m: \\
l_{1}^{\prime \prime}-l_{1}^{\prime}= \\
l_{1}^{\prime}=\frac{l_{1}^{\prime}+\prime \prime \prime \prime \prime}{1+m}
\end{gathered}
$$

Similar!

$$
I_{1}^{\prime}=\frac{l^{\prime} \prime+\prime^{\prime \prime} \prime^{\prime \prime \prime},}{1+\prime_{2}^{\prime \prime},}
$$

$$
I^{\prime}-\frac{I^{\prime}+m \prime^{\prime \prime}}{1+m}
$$

 いい hat.

$$
\begin{gathered}
\prime \prime \prime \mu)^{\prime \prime} . \\
\mu^{\prime}
\end{gathered}
$$

The abowe prow hohds for any rabl point I '. C'onversely, any ral valut of λ detrmines a real me (the reöndinates of Y and Z
 values of λ or for imowinary pentes V° and Z the statement at the hergming of this sertion is the defintion of a straight line.

It is twhe motiond that λ is an example of the kime of coürdinates

24. The linear equation in point coördinates. I homenferow,

$$
t_{1} r_{1}+t_{2} r_{2}+t_{13} r_{3}=0,
$$

$$
\begin{equation*}
"_{1} r_{1}+{ }_{10} r_{0}+"_{i ;} r_{i}=11 \tag{1}
\end{equation*}
$$

T'hern

$$
\begin{aligned}
& "_{1} z_{1}+\mu_{1} z_{2}+{ }_{3} z_{0}=0 .
\end{aligned}
$$

Frome thene three equations we hatr

$$
\begin{array}{cccc}
r_{1} & r_{2} & r_{3} & \\
r_{1} & I_{2} & ! & 0 . \\
\because_{1} & \because_{2} & \because &
\end{array}
$$

 phim $\lambda_{1}, \lambda_{i} . \lambda_{3}$ shth hat

$$
\begin{aligned}
& \lambda_{1} I_{1}+\lambda_{1 y_{1}}+\lambda_{11} r_{1}=I_{1} \\
& \lambda_{1} r_{2}+\lambda_{2} H_{2}+\lambda_{n}{ }_{n} .
\end{aligned}
$$

 (ht'11 a-

$$
\begin{aligned}
& \mu \cdot r_{1} \quad U_{i}+\lambda \because \\
& \mu \cdot r_{2} \quad!+\lambda \because \\
& \mu \cdot t=!+\lambda \because
\end{aligned}
$$

The elimination of ρ amd λ then gives

$$
\begin{array}{llll}
r_{1} & n_{1} & \ddot{n}_{1} \\
r_{2} & n_{3} & \ddot{z}_{n} & =11, \\
\ddots & \ddots & \ddot{n}_{3}
\end{array}
$$

 thenemat the heximming of this sertion in promet.
25. Lines of a pencil. I!

$$
\begin{array}{ll}
{ }_{1} 1_{1}+n_{2} r_{2}+1 & -11 \\
b_{1} \prime_{1}+b_{1} r_{2}+b_{1} & 11
\end{array}
$$

 introwntion is

 the lins of a pernil.

 of

EXERCISES

 H1m". writ: $1 \therefore$. 1 . 11 ;

4. Nhow that homogemenns peint coordinates are connected by the relation

$$
\rho\left(\cdots k_{1} r_{1}+k_{k_{2}} r_{2}+\cdots k_{3} r_{3}\right)=k
$$

Where ". ${ }^{\text {and }}$ and are the hagthe of the sides of the triangle of reference ambl k is its area. Henere show that

$$
w k_{1} r_{1}+b k_{i_{2}} r_{2}+c k_{3} r_{3}=0
$$

is the equation of the straight line at infinity.
5. Comsider the (anse in whieh l is at intinity. . and 1 'are right athyes, and $k_{1}=k_{2}=k_{3}=1$. Show, for vample, that $x_{1}+x_{3}=0$ is the equation of the straght line at intinity and that $r_{1}+r_{3}+\lambda . r_{2}=0$

26. Line coordinates in a plane. 'The coeftionents $"_{1}$. ${ }_{2,2}$ " ${ }_{0}$ in the "ynation of a stmight line are mafioient to fix the line. In fart, to atly set of ratios $"_{1}: "_{2}: \|_{3}$ "orresponds one amd only one line, and combersely. These ratios may acoodingly le taken as caiordinates of a straghth line. or line coiodinutes, and a germetry may he built up in which the element is the straight line and not the peint.

A variable or general set of line waindinates we shall denote he $\|_{1}: "_{2}: "_{i,}$. and the line with these evoindinates is the straght line which has the penint equation

$$
\begin{equation*}
u_{1} r_{1}+u_{3} r_{2}+u_{3} r_{3}=0 . \tag{1}
\end{equation*}
$$

This equation maty also be comsidered at the necessary and suthi-
 "nnited": that is. that the print lies wh the line and the line patsest through the print.

It is whsme that the definition of line eomatinates holds for

 1:1:1. For the submithtion

$$
\rho \cdot r_{1}=\begin{aligned}
& r_{1}^{\prime}, \\
& r_{1}
\end{aligned} \quad \rho \cdot r_{2}=\begin{array}{lll}
r_{2}^{\prime} \\
a_{3} & & \\
r_{3} & r_{1}^{\prime} & u_{3}
\end{array}
$$

 $i_{1} \cdot r^{\prime}-11$.
27. Pencil of lines and the linear equation in line coordinates. If

$$
\begin{equation*}
r_{1}+\lambda \prime_{1}: r_{2}+\lambda \prime_{2}: r_{3}+\lambda \prime_{3} \tag{1}
\end{equation*}
$$

 all! " ${ }^{\circ}$.
(ionsider mow an equation of the tirst derpere in line coind dinaters.

$$
"_{1} "_{1}+"_{2} "_{2}+"_{: 3} "_{3} 11 .
$$

It may le roalily shown as in

 whia.th the revt, x is the lwint $1_{1}: "_{2}:$:
('mpatre the limear enpation in fuint raïndinates.

$$
"_{1} r_{1}+"_{1} r_{2}+"_{1} r_{;}=1,
$$

atm the limat "pation in line ernimdinates.

$$
\begin{equation*}
"_{1} "_{1}+{ }^{2} "_{2}+"_{1} "_{n}-{ }^{n} . \tag{t}
\end{equation*}
$$

 'In"tion et' that lime.

 ther lime 'It"rtione et thist perint.

EXERCISES

3. Fimb in lime ernothates the equations of the perints of the range whinh lie on the lime $1: 1: 1$: ahos the peint coendinates of the same ranse.
4. Find in print werminates the rquations of the lines of the perneil whit revtex 1:1:1. Fime atow the lime eoodinates of the lines of the sathr 1"•14•il.
5. Shaw that lime eomedinates are propertional to the sperments cut

6. Shew that ham exordinates are propertional to the thre perperndiontare from the vertioes of the triangle of referenee to the straght

28. Dualistic relations. The grometries of the point and the line
 alsebrate ambly is the same in the two geometries. 'The differchere comes in the interperation of the analysis. In both ases we hatre the two independent ration of thee variahles whioh are used
 cörtinates of a foint: in the other case they are interpeted as the coorstinates of a line. In both eases we have do comsider a lincor homogeneons rquation commeting the variables whith is satisfied he a singly intinite set of ratio pairs. Th the point geometry this equation is satisfied by the singly intinite set of !"rints which lie on a straght line. In the line geometry this egration is satistied he the singly infinite set of statight lines which fatse throngh a print.

 lintar whations has two interpetations which differ in that " linte"

 a Junat.

 the line ot whirla the ermmamates
 the lime.
 Fmbthation of any buint ont the

and $r_{1} r_{1}+h_{2}+h_{j_{3}}=0$
 (-pmation ut any lime through then ?nime uf imporetim is

$$
\begin{aligned}
& 3_{3} r_{1} \\
& +{ }_{2} r_{2}+"_{4} r_{3} \\
& +\lambda_{1} H_{1} r_{1}+b_{2} r_{2}+b_{1} r=0
\end{aligned}
$$

 stratuht han when

1).

Thimes sminh lin.
\geq

-$\therefore-11$

$$
\Sigma_{" 1} \underbrace{\prime \prime} \text { 上 } 0 . \Sigma^{\prime \prime} 0
$$

 a simaght lha.

A linear mantinn " ${ }_{1}{ }_{1}+{ }^{2}{ }_{2}+$
 the phin of whath the condentat.-
 the wint.

 print of interaction are $\theta_{1}+A \ddot{H}_{\text {a }}$.

If $"_{i} "_{1}+{ }^{2},{ }^{\prime}: "_{i},=0$
am1 $b_{11} \prime_{1}+b_{2} n_{2}+b_{0_{3}}{ }_{3}=0$
art the equatima of tan pints. the cumatinn of ans funt wh the hame anmothe them is

$$
\begin{aligned}
"{ }_{1} "_{1} & +"_{2} "_{2}+{ }_{2} "_{0} \\
& \left.+\lambda_{1} b_{1} "_{1}+b_{2} "_{2}+b_{1} "_{1}\right)=0 .
\end{aligned}
$$

 a print whon

$$
\left[\begin{array}{ccc}
r_{1} & \prime \prime & ": \\
n_{2} & ": & "= \\
n_{0} & \prime \prime & "
\end{array}\right.
$$

(1).
29. Change of coordinates. Wi. will tirn whatiol the whinn

$$
\begin{align*}
& u_{1} x+b_{1}: \prime+r_{1} t=0 \\
& a_{3} x+b_{1}: 4+r_{2} t=0 \tag{1}\\
& u_{3} x+b_{3} u+r_{3} t=0 .
\end{align*}
$$

Then by a familat themem in antlytio geometry

$$
\begin{aligned}
& I_{1}=\mu_{1} r+l_{1}!\prime+r_{1} l_{1}, \\
& \text { 上 } u_{1}^{\prime \prime}+l_{1}^{2} t \\
& P_{2}=\begin{array}{c}
a_{2} r+l_{2} \mu+r_{2} t, \\
\pm \sqrt{2}+l_{2}^{2} t
\end{array}
\end{aligned}
$$

Wi．maty take withomt hos of gememality

$$
k_{1}= \pm \sqrt{\mu_{1}^{2}}+l_{1}^{2} t . \quad k_{2}= \pm \sqrt{a_{2}^{2}+b_{2}^{2}} t, \quad k_{3}= \pm \sqrt{1_{3}^{2}}+l_{3}^{2} t .
$$

Smore carls of the equations（1）may be multiplied by at fiter withont rhatging the hates represented．
＇lherefore we hate

$$
\begin{align*}
& \rho \cdot r_{1}=a_{1} r+b_{1} r_{1}+r_{1}{ }^{t} \text {, } \\
& \rho \cdot r_{2}=c_{12} r+l_{2} n_{2}+r_{2} t, \\
& \rho \cdot r_{3}=u_{3} r+l_{3}, 4+r_{3} t,
\end{align*}
$$

Where ρ is a prymertionality fartor．

 alli！t ．
 its sides loring

$$
\begin{align*}
& a_{1}^{\prime} r+b_{1}^{\prime} t+r_{1}^{\prime} t=0 \\
& a_{2}^{\prime} r+l_{1}^{2} t+r_{2}^{\prime} t=11 \\
& a_{2}^{\prime} r+b_{1}^{\prime} t+r_{1}^{\prime} t
\end{align*}
$$

$$
\begin{align*}
& \rho^{\prime} \mu_{1}^{\prime}-u_{1}^{\prime} r+l_{1}^{\prime}, r+r_{1}^{\prime} t, \\
& \beta^{\prime \prime} \quad \mu_{4}^{\prime}+l_{2}^{\prime} 4+r_{2}^{\prime} t \tag{1}
\end{align*}
$$

Eynations (\because) maty he solved for r, y, and t and the results substituted in (f). 'lhere result relations of the form

$$
\begin{align*}
& \sigma \cdot r_{1}^{\prime}=\beta_{1} r_{1}+r_{2} r_{2}+\beta_{n} r_{3} \\
& \sigma \cdot r_{2}^{\prime}=\beta_{1} \cdot r_{1}+\beta_{2} r_{2}+\beta_{3} r_{3} \tag{i}\\
& \sigma \cdot r_{3}^{\prime}=\gamma_{1} r_{1}+\gamma_{2} r_{2}+\gamma_{n} r_{3}
\end{align*}
$$

 $r_{1}: r_{2}^{\prime}: x_{;}$t 1 . $r_{1}^{\prime}: r_{2}^{\prime}: r_{3}^{\prime}$.
 thons in trilimear coirethates of the sides of the triangle of reforemer
 jeet to the comdition that their determinant denes mot vanish, and this is the only comdition mposed men them.
by the transormation (i) the equation of the straight line
beromites

$$
\begin{aligned}
& u_{1} r_{1}+u_{2} r_{2}+u_{3} r_{3}=0 \\
& u_{1}^{\prime} r_{1}^{\prime}+u_{2}^{\prime} r_{2}^{\prime}+u_{3}^{\prime} r_{3}^{\prime}=1
\end{aligned}
$$

where

$$
\begin{align*}
& \rho \prime_{1}=n_{1} \prime_{1}^{\prime}+\beta_{1} u_{2}^{\prime}+\gamma_{1} u_{3}^{\prime} \text {. } \\
& \rho \prime_{2}=n_{2} \prime_{1}^{\prime}+\beta_{2} n_{2}^{\prime}+\gamma_{2} n_{n}^{\prime} \text {, } \tag{i}
\end{align*}
$$

These are the formon for the change of line ariordinates.
In cumbertion with the dhatge of woindinates there themems are of importamer.

Themem I follows immerlately from the fant that eqnations (\therefore) athl (ij) atre lintar.

To prose theorem II mote that from (\therefore) if the corimbates $y_{1}+\lambda z_{1}$ are tramsiomed intur r^{\prime}, then

$$
\begin{aligned}
& \sigma \cdot r_{1}^{\prime}=n_{1}\left(n_{1}+\lambda z_{1}\right)+n_{n}\left(n_{1}+\lambda z_{n}\right)+n_{i}\left(n_{i}+\lambda_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma_{1} n_{1}^{\prime}+\sigma_{i} \lambda \because_{1}^{\prime} .
\end{aligned}
$$

Where σ_{1} and σ_{2} are nsed, since in transforming ! and z_{1} her (i) the propertmality fators may difter.

Similar expresions mat be fomd for r_{2}^{\prime} and r_{3}^{\prime}. Hente we have $r_{1}: r_{2}^{\prime}: r_{3}^{\prime} \mu_{1}^{\prime}+\frac{\sigma_{-}}{\sigma_{1}} \lambda z_{1}^{\prime}: \mu_{2}^{\prime}+\frac{\sigma_{i}}{\sigma_{1}} \lambda z_{2}^{\prime}: \mu_{3}^{\prime}+\frac{\sigma_{2}}{\sigma_{1}} \lambda z_{z}^{\prime}$, whimh proves the
 tions (${ }^{\text {b }}$)

Thenrem Ill follows at onte from II.
30. Certain straight-line configurations. A comiplator n-lu' is
 pass through the same point, tugether with the $!n(n-1)$ puints of interaretion of these lines. I romplete there-line is therefore a trimere comsisting of three sides and there vertiers.
 flete quadrilateral and comsists of fome sides and six vertioes. Thas in Fig. 10

F1... 111

 and $A . P$ and $\%$. A straight line joming two opposte vertices is a diaf"mal line. The complete quadrikateral has tho.e diaronal lines.

I somplete repaint is defined as the figure formed ber n points, mothree of which lie on a straight line. togethor with the $!2 n(n-1)$ straight lines joining these points. A romplete threepoint is therefore a triamgle ronsisting of theree vertices and three silles. A complete fomr-point is called a eomplete quadrangle and eonsists of four vertioes and

$\mathrm{F}_{14}, 11$ wix sides. Thas in Fig. 11 the foner vertiees are . I, li. 1. I' amil the six silles are k, l, m, n, p, q. Two sides mot pasimer thronesh the same vertex are called opposite, as k and m. I aml n. anl $/$ anl $\%$
 Perint. The complete qualranghe hats there diagomal peints.

 complete qualmangle.
 theromers:

 a', A^{\prime}, arederetively, the Sile of lying Mposite tha

WV: hall hemote hy A. 1^{\prime} the staight linte -ammenting amt 1 . ant by an' the Jumt af intersection of a ama a. Than the two the-

It the atrmisht limes

I!..12

 lower lime for heoment 11 .
$\operatorname{Take}\left\{\begin{array}{c}.1 B C^{\prime} \\ \text {,h,., }\end{array}\right\}$ as triangle of reference and $\left\{\begin{array}{l}11 \\ \prime \prime\end{array}\right\}$ as the mit $\left\{\begin{array}{l}\text { binint } \\ \text { line }\end{array}\right\}$. Then the caniodinates of $\left\{\begin{array}{l}1 \\ 11\end{array}\right\}$ are $0: 0: 1$, these of $\left\{\begin{array}{l}1 \\ l\end{array}\right\}$ are $11: 1: 10$. thase of $\left\{\begin{array}{c}\prime \\ 1\end{array}\right\}$ are $1: 0: 11$, and thase of $\left\{\begin{array}{c}" \\ "\end{array}\right\}$ are $1: 1: 1$. I! are $1: 1+\mu: 1$, and thene of $\left\{\begin{array}{c}n^{\prime \prime} \\ r^{\prime}\end{array}\right\}$ are $1+\nu^{\prime}: 1: 1$.
 $1+\rho: 1+\rho(I+\mu): 1+\lambda+\rho$, and if this: $\left\{\begin{array}{l}\text { point lies also on . } 1 / ; \\ \text { phases also thromoh ith }\end{array}\right\}$
 $0:-\mu: \lambda$. Similarly, the coïrthates of $\left\{\begin{array}{l}l, l^{\prime} \\ l, l^{\prime}\end{array}\right\}$ are $\nu: 0:-\lambda$ and the coïrdinates of $\left\{\begin{array}{l}\text { an' } \\ \text { A. } 1^{\prime}\end{array}\right\}$ are $-\nu: \mu: 11$. Since

$$
\left\lvert\, \begin{array}{rrr}
1 & -\mu & \lambda \\
p^{\prime} & 0 & -\lambda \\
-p & \mu & 1
\end{array}=0\right.,
$$

 two themems are therefore prosed.

The $\left\{\begin{array}{c}\text { mint } \\ \text { line }\end{array}\right\}$ "quation of the $\left\{\begin{array}{c}\text { line" } \\ \text { geint " }\end{array}\right\}$ is

$$
\left\{\begin{array}{l}
\lambda \mu r_{1}+\nu \lambda r_{2}+\mu \nu r_{1}=11 \\
\lambda \mu \mu_{1}+\nu \lambda \mu_{2}+\mu \nu \mu_{3}=0
\end{array}\right\} .
$$

For the (amplete quadrilateral we shall prowe the following H14.erem:

 (1) are that the mainditatus of

 ant tinally that thase of are - 1: 11: 1. 15 5 11 iln thenem follows.

The (laalistie thenterm to III is an follows:

F14. I: jaimel line strmially limes tor thei

 diu!t"Mal ["Mint.
'The prond is left to the reatere
 the erme ration of the forr ferints in whet the form limse ent ant

 (1) V. a follows:

VII. Theorem of Pappus. It l, l_{3}, I_{s} "re there mints on at

 lime. = " - W that the ariotimates if l_{1} ate (1): 1: 11) athl thone of IR (10:0:0) and ma! - \quad tatin the mat pmint that the coriolinates of l's ate (11:1:1) aml flame ol la am (1: ": 1). (ath the maimlinatos of $f(1): 1: \lambda$) aml thase of I, 1: ": 4) 'Then the erpar Liont of $l_{1}^{\prime}!_{2}^{\prime}$ in $r_{3} 0$ and that
 linus manowi in the point s($1:-1: 1)$. The empation

Fin. 14 uf l'r is r-r 1 and that

λ		-1	11	
1	1	μ	μ	11
1		μ	1	μ

tha pandi in laft th therember.

EXERCISES

1. Prowe theorem IV
2. Prove theorem Vlll.

 the sher lef gators thromgh at tiond jumt.

 am? P' lio on 1 wo fised lime whin intoment on lit. Pront that the. wotex R lins una statight lim.

 lowns of R is a strathet lim thongh 1 .

 ather.

3. Curves in point coordinates. 'The erfantions

$$
\begin{equation*}
r_{1}: r_{:}: r_{3}=\phi_{1}(t): \phi_{2}(t): \phi_{i}(t), \tag{1}
\end{equation*}
$$

 wemt if prints ralled a remere. It is mot meressary that any point "f the emon shmblat be real. We shall limit ommelves to those
 Werisathes of at hems the tirst oreder.
 Wharwise we may wate equations (1) in the form

$$
\begin{array}{ll}
r_{1} \\
r_{i}
\end{array}=\begin{aligned}
& \phi_{1}(t) \\
& \phi_{i}(t)
\end{aligned}=r_{1}(t), \quad r_{3}=\frac{\phi_{2}(t)}{r_{3}(t)}=r_{2}(t) .
$$

It is then presihn tw elmanate thetween the equations (\because) with tlu proult.

$$
\frac{r_{1}}{r_{3}}=\mathrm{p}\left(\frac{r_{0}}{r_{3}}\right)
$$

('indermely. let there be given an equation

$$
\begin{equation*}
f^{\prime}\left(r_{1}, r_{2}, r_{i}\right)=1 \tag{1}
\end{equation*}
$$

$$
f^{\prime}\left(\lambda, r_{1}, \lambda, r_{2}, \lambda, r_{3}\right)=\lambda^{n} f^{\prime}\left(r_{1}, r_{2}, r_{3}\right)
$$

Where λ is ant maltipler. not zerom infinity. In partomlar, if we phane $\lambda=\frac{1}{r_{:}}$we hate

$$
f^{\prime}\left(r_{1}, r_{2}, r_{3}\right)=r_{3}^{\prime \prime}+\left(\begin{array}{ll}
r_{1}^{\prime} & r_{2}, 1 \\
r_{3} & r_{3}
\end{array}\right)
$$

for all frimt. for whinh or is mot zoro. Equation (f) may then be writtor

$$
f^{\prime}(x, t, 1)=11 .
$$

14/1.\%

$$
x=\frac{r_{1}}{r_{i}} \quad \begin{array}{lll}
r_{i} & r_{i} \\
r_{0}
\end{array}
$$

 hater partiald Amisation of at leant the tims metere

dues not vanish. Then similar comditions hold for (a), and by the theory of impliat functions - we hate. from (i) .

$$
x=\phi(t),
$$

which is valid in the virinity of $t_{0}=\frac{y_{2}}{y_{3}}, x_{0}=\frac{y_{1}}{y_{3}}$.
This last equation may be written

$$
r_{1}: r_{2}: r_{3}=\phi(t): t: 1,
$$

Which is of the lype of equations (1). Heme under our hypotheses equation (\downarrow) represents a rurbe.
 $r=0$. These maty be fomm he dired substitution in (t) or we may

$$
\begin{equation*}
\prime_{1} x_{1}+\prime_{2} n_{2}+n_{1} r_{3}=0 \tag{i}
\end{equation*}
$$

the erefherents of which are determined her the two eynations

$$
\begin{aligned}
& u_{1} 4_{1}+u_{2} \eta_{2}+"_{n} \eta_{i}=0 . \\
& n_{1}\left(y_{1}+y_{1}\right)+u_{2}\left(y_{1}+y_{!}\right)+u_{0}\left(!_{3}+y_{!}\right)=0 .
\end{aligned}
$$

From therse it follows that

It is tu ler motiod that these involse the ration of the ine

 the tangent maty be moxition as follows:

$$
\begin{equation*}
r_{4}^{\prime}+r_{4}^{\prime} t_{n}^{\prime}+r_{3}^{\prime} t_{3}^{\prime} 11 \tag{11}
\end{equation*}
$$

 pint on the rarse exerp for at point $y_{1}: y_{2}:!_{3}$ at which

$$
f^{\prime}\left(r_{1}, r_{2}, r_{3}\right)=0
$$

thor is 11 hafinite tantent lime !imen biy the rymation

$$
\begin{equation*}
\left.\therefore 1_{1}+\lambda z_{1} \cdot y_{1}+\lambda z_{3} \cdot n_{3}+\lambda z_{3}\right)=0 . \tag{1:;}
\end{equation*}
$$

$$
\begin{equation*}
1_{1}+1_{1} \lambda+1_{2} \lambda^{2}+\cdots=11 \tag{11}
\end{equation*}
$$

it. I'...int.

 wothe Equation (lt) is then an atorbate equation of the mh

32. Curves in line coordinates. The cupations

$$
\left."_{1}: "_{:}: "_{1} \phi_{1}(t): t_{2}^{\prime}, t\right): \phi_{i}(t)
$$

 equations of that chare.
 of the fimbetions $\phi_{1}(t)$. Wr maty shaw that equations (1 , atre equisatent to the eqnation
('onversely, let there be given an equation

$$
t\left(n_{1} \cdot\left({ }_{2}, n_{1}\right)=11\right.
$$

 of therf(1).

 tworytations

$$
r_{1} r_{1}+r_{2}+r_{-} r^{\prime}
$$

the sulntion of whim is

lis virtur of（：and（1）the pints L form in gencral at curve．
 intleprotent of t ．In hat cant the points I fior all lines of（1） minmid．

If the want of lime is 小etined he a single equation（ \because ）the

Bint

$$
\ddots_{1} H_{1}+\ddots_{2} \because_{2}+\ddots_{3} n_{3}=11 t=11 .
$$

＂hットい

The conimanates of L are therefore

$$
\begin{equation*}
r_{1}: r_{2}: x_{3}=U_{1}^{\prime}: A_{2}^{\prime}: A_{3}^{\prime} \tag{1}
\end{equation*}
$$

 f is suth a lime that
in which vase fo is called a simumlur lime．

 lwiturnt of＂．This womblathen，for example if

$$
I=\left(\left\|_{1}\right\|_{1}+"_{2} \|_{2}+"_{3} "_{i}\right) \phi\left(\|_{1} \cdot "_{:} \cdot "_{i}\right)
$$

 1．wa all lime in the mighminum of x_{i} are then all $"_{1}: "_{0}: 4$.

 いいいい

$$
f_{i} r_{2}, \quad \phi\left(r_{1}, r_{1}\right) \quad n
$$

(i)

Therfinge

$$
\begin{gathered}
r_{1}^{\prime \prime}+r_{2}^{\prime}+r_{i}+r_{i}^{\prime}+r_{2}=11 . \\
r \phi-\rho n_{i} \\
r
\end{gathered}
$$

 －．41：ation

$$
i_{1}+\lambda \pi_{1} \cdot \lambda_{1} \cdot \cdot \lambda_{11},{ }^{\prime} .
$$

$$
\begin{aligned}
& p\left(r_{1}^{\prime \prime}+r_{1}^{\prime \prime}+r_{i}^{\prime \prime}\right) .
\end{aligned}
$$

The dablistiv rehation between peint and line coürdinates is (xhithitul in the following restatement, in parallel cohmms, of the

 -atithal hy atmollmensional exWht of prim - whichlin on a combe. I line juming two consemblive foint of the eurve is tangent w the rume lts line coerelinates
 - Imanation of $r_{1}: r_{2}: x_{3}$ betweell Whese rypations amd that of the "uncr gives the line equation of the "urve.

The equation of the tangrant lime to the eumbe detine bey the print extent is

$$
\ddots_{U_{1}}+r_{1}+r_{2}+\frac{c t}{y_{3}} x_{3}=0
$$

It in of the nth degree the - ance in of the ath orters.
(1) aty line lite " points of the

The rarse of the tirst order is a thation lime the hase of a peraril wf funts. It is of zero dass and hats lan lime equation.

An erquation $f^{\prime}\left(u_{1}, u_{2}, u_{3}\right)=0$ is satistied by a one-dimensional extent of lines whirh are tangent to a eurve A print of intersection of two consecmive lines is a point on the eurre. Its puint coordinates are $r_{1}: x_{2}: x_{3}=\frac{\hat{c} f^{\prime}}{c u_{1}}: \frac{\bar{c} f^{\prime}}{c u_{2}}: \frac{\bar{c} \|_{3}}{c u_{0}}$. The elimination of $u_{1}: u_{2}: \|_{3}$ between these equations and that of the line extent gives the frint equation of the colve.

The equation of a print on the -urve eloveloped by the line extent is

$$
\frac{c}{c} t^{\prime} u_{1}+\frac{\hat{c} t^{\prime}}{c_{1}} u_{2}+\frac{\hat{c} t^{\prime}}{c_{1}}{ }^{3} u_{3}=0
$$

If f is of the nth degree the curve is of the ath elass.

Through any proint go n lines which are tangent to the eurve.

The curve of the first elats is a point, the rertex of a fromil of lines. It is of zero order and has no print equation.

EXERCISES

1. Find the inumar bint of $r_{1}^{3}+x_{1}^{2} \cdot r_{3}-x_{2}^{2} \cdot r_{3}=0$. Show that

\because. Fam thas smant paint of $x_{1}^{3}-x_{1}^{2} x_{3}=0$. show that thongh it

 simsular]mint.

2. Shew that through any puint on a simentar line of a lime extant

 from that paint are comedent. Ilmatrate ly ensidering the line extent

 fixer frimt, shm that the eypation

$$
u_{c_{1}}^{r t}+y_{2} \frac{r_{1}}{r_{2}}+y_{i} \theta_{i}^{\prime}=0
$$

 interant i - 0 in mather prints.

 order., or entimely of strablit lines.

$$
\begin{aligned}
& 3 \\
& \therefore \quad=
\end{aligned}
$$


```
17.1%'% I...! |..1.
```


$p_{1}=1.1 \rightarrow 1+.1$

Equatinns (1) then assoriate to any pexint y, a definite line $"_{\text {. }}$. This line is walled the pertar of the perint, and the peint is called the perle of the line. The ergnation of the pelar is

$$
\begin{aligned}
& +"_{2,3}\left(r_{2} \mu_{3}+r_{n} \mu_{2}\right)=0,
\end{aligned}
$$

(1). more comparts.

$$
\Sigma "_{1, k} y_{1}, r_{k}=0 . \quad\left({ }_{1,2}=\prime_{k,}\right)
$$

 4, is determined only when equations (1) can lee solved, that is, when the diseriminamt I, S3: does mot vanish. Hemere

 when the aurer has new simpular puint.

The following theorems are now easily prowed:

It is whims that equation (-2) manders the erpation of
 equation (2) is that of a tangent the meres the mblum of egplatime (1) will gime the peint of witate

 Fquation (2) th the engation of the chere.

 folue of l^{\prime}.

If I is the point y and () is the point z. the frian of l is
amd that of (! is

$$
\underline{L} n_{i k} y_{i} r_{k}=11, \quad\left(n_{k=1}="_{6}\right)
$$

$$
\sum a_{1 k} z_{i} r_{k}=0 . \quad\left(a_{k}=1_{1}\right)
$$

The comdition that I shombl lie on the protar of $!$ is

$$
\Sigma{ }_{1,2} z_{\mathrm{L}} \|_{1}=0,
$$

which is just the condition that ? should hio on the prlar of f^{\prime}.

 "t intersection of the temyents.

Let $l^{\prime}($ Fig. 15) be a point not on the emare. The polar of l. being a straight line, ellst the equre in two pointi T and s. Thest two perints are distinct hecalse by thentem ll the fular is mot tangent, simee I^{\prime}. by herghesis, is mot on the curve.

Since be hypothesis the curve has no singular point, it has a unigue tangent line at each of the points T and \therefore. Thent tangents are the polars of their points of comtact and henee hy theorem V pass through I '. 'The polar of I therefore passes through T and s' (theorem V).

There can be mo more tangents
 from ${ }^{\prime}$ to the curve. for if there were.
 TS' wond intersect the arve in more than iwn lmint. whind is

 of two staight lines and womhl have a singulay fumb, what is

 mothen of sk+thing the folar of I.

'Theneh l ' dran 1 wn dumb, one intersetting the curve in the
 T aml 1 . braw the tangents at lhe puinti A. \therefore, T, aml r, and let the tancernts at h and x interome at l and lit the tallwents at T ambly intersere at k . Then, hy hewem \I, L is the pole of R RS aml F in the pole
 l pasies thomagh L amel K allal is the line L / π.
 "ithont sim!ment puints it is pmasille

!1...!

We may take A (F゚ig. 17), any fuint mot ont the rame, and
 abd camon lie entirely on the corse, suce the ante has ho singular perint. Wr may then takre Fa. aly peint on
 amb wontmor its polar. This polar will pascharorla I (theoteml') hat
 (WO felars mow fommed are distinct lint- (themom |) and will intersome
 the frlar of of thennm V. The

 (1, I) ㅅ

 the erplation

 therefore $\lambda_{1}-\lambda_{2}$ l! $1+1$ the themem is promed.

 'guired pulat /.

EXERCISES

B. IPone that the thangh toment be the diagnals of any complete

4. Prone that the Whazer whon sertiers are the diagomal perints
 1manald
5. IPane that in rume of pomats on any lime is projewtive with the

i. If the shas of a triangle pase thromph thee fixen funts while
 butex is a conta.

 in wheh the anti- $t_{1}^{\prime}=0$ and $f_{2}^{\prime}=0$ interent.
9. Prowe that thmuh an athtary ferint gene one and anly one

10. Shan that any stmand line intersents a formof of conime in a set

11. Prowe that the fulars of the sam print with respert to the

12. Wt the font P heserbes a stathe lime pove that the vertex of
 a cunt.

[^2] and and involution in the pencil sum that romeromenting line in the involution ane comjugate thameters of the rente. Show that the tixal lines of the mbulation are the asymptotes.

35. Classification of curves of second order. W: are now ready to timel the simplest furms into which the equation
\[

$$
\begin{equation*}
\underline{u_{1, k}} \cdot r_{2} r_{k}=0 \quad\left(d_{k 1}=\prime_{2 k}\right) \tag{1}
\end{equation*}
$$

\]

(ath be put by a thange of mairdinates.
As before let wis phace

$$
I=\begin{array}{ccc}
"_{11} & a_{12} & a_{13} \\
A_{12} & " 1 & "_{23} \\
{ }^{1} & "_{23} & "_{3,3}
\end{array} .
$$

 (VII, 冬: 4). Let whe sum triangle be taken as the triangle of referemer. 'Then, sume the polar of $0: 0: 1$ is the line $r=0$. wo
 pular of $0: 1: 1$ is $r_{2}=0$, we shath hase $"_{10}="_{2 i}=0$. Since the polat of $1: 0$: 0 is $r_{1}=0$, we shatl have $"_{12}="_{1:}=0$. The empation of the curw is therefore

$$
a_{11} r_{1}^{2}+a_{22} r_{2}^{2}+a_{1} r_{3}^{2}-0 .
$$

 the anter would hatre a smoular perint.

If the eovirelinates of the mivinal equation of the entre are real

$$
\begin{array}{ll}
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=0 . & (\because) \\
r_{1}^{2}+r_{2}^{2}-r_{1}^{2}=1 . & (1)
\end{array}
$$

 the other reperemits ohe which has real fumbe. It in whime that

fonme the seromb equation ean he reduced to the first by phating $r_{3}=i_{i}$. whin does mot involve magimary axes but an imatrimary value of the eonstant k_{a}. Smmming whe wave the the wem:

(AsE II. $\quad l=0$, but mot all first mimors of $/$ are zero. 'The
 le taken as the point $0: 0: 1$. Then $a_{13}=a_{23}=a_{3 ; 3}=0$. The points 11:1:0 and 1:0:0 may be taken in an infonite nmber of ways so that earh is on the polar of the othere Eath of these pulars passes
 have " ${ }_{12} 0$ in aldelition to $"_{23}=0$, as ahealy fomml, which is also the comblion that $1: 0: 0$ is the pole of $x_{1}=0$. The equation of the dinve is therefore

$$
\begin{equation*}
a_{11} r_{1}^{2}+a_{2} r_{2}^{2}=0 \tag{i}
\end{equation*}
$$

Neither of the roeftioments a_{11} or a_{22} sim le zero, for if it were,

 yrantitios 10 ond of the types

$$
\begin{align*}
& r_{1}^{2}+r_{2}^{2}=11, \\
& r_{1}^{2}-r_{13}^{2} \tag{i}
\end{align*}
$$

Smmanis ly, we have the hememe:

EXERCISES

2. Shem from the formamer that if an elligne or at herertwhat is
 amb comaraty.

 Whamems whith are orthomath to eath other.

 ortheremal. Write the apation of a patablat tangent to the line at intinity in a cirde point.
36. Singular lines of a curve of second class. (omsimer the rumb

$$
\begin{equation*}
\pm .1_{k} "_{1} \prime_{k}=11 . \quad\left(. I_{k}-I_{i k}\right) \tag{1}
\end{equation*}
$$

 eynations

$$
\begin{align*}
& 1_{12} \prime_{1}+I_{12} \prime_{2}+I_{1},^{\prime \prime}{ }^{\prime \prime} \\
& 1_{1 i_{1}}{ }_{1}+1 \ldots "_{2}+1 . i^{\prime \prime} \quad{ }^{\prime \prime}
\end{align*}
$$

 the mpation

$$
\begin{array}{ccc}
1_{11} & 1_{12} & 1_{1,3} \\
& 1_{12} & 1_{22} \\
1_{12} & 1_{12} & 1
\end{array}
$$

[^3](AsE H. $\Delta=0$, but mot all the first mimms of $د$ are zero. Equations (\because) hat onte sohtion, ant the eqrve has one singular line. Ler this line by a change of eromanates be taken as the line 0: 0: 1. The degree of the equation will met be changed, hat in the new equation we shall have $A_{13}=A_{23}=A_{33}=0$. The equation therofore liecomb-
$$
A_{11} u_{1}^{z}+2-A_{12} u_{1} u_{2}+A_{22} u_{2}=0
$$

Which ran be factored into two line ar factors. These factors canmat he cqual, for if the were we shomhthate $t_{11}: f_{12}=f_{12}: f_{2,2}$, and -quations (\because) writen for the mew equation. Womblate mose than whe colution. Vath of the factors of (\because) represtats at pencil of lines the vertex of whieh lies on the lime $x_{3}=0$: that is, wn the singular line of the loces of (1) Equation (1) is the line equation of the two verices of the pencils represented, and the singrular line is the line romnecting these two vertioes.
 of one of the equations ($\because \mathscr{O}$) is a solution of the whers athe the
 that pencil is taken as the pended $"_{1}=0$. We shatl have in the mew
 $\mu_{1}^{2}=0$. Hance in thix case rquation (1) is the equation of two wim-inlent points.

SHmming "p, we hate the following theorem: A anter of the

37. Classification of curves of second class. lis S:? the limit printe of intursection of two lintes of hat lown

$$
\begin{equation*}
\sum 1_{i} n_{2} 1_{k}=11 \quad\left(.1_{k i}=.1_{2 k}\right) \tag{1}
\end{equation*}
$$

ate wivan hy the ryations

$$
\begin{align*}
& p r_{1}=A_{11}^{\prime \prime} \prime_{1}+A_{12}{ }^{\prime \prime}{ }_{2}+A_{2} \prime^{\prime \prime} . \\
& \rho^{\prime}=A_{12} \prime_{1}+A_{22_{2}}{ }_{2}+A_{2} ._{3} . \\
& \mu_{1}=1_{1} n_{1}+1_{2} \prime_{2}+1 n_{;}
\end{align*}
$$

 equation (1) can be replated by the equation

$$
u_{1} r_{1}+"_{2} r_{2}+"_{3} r_{5} \quad 1
$$

The result of the submitution is the tefone

$$
\begin{array}{llll}
r_{1} & 1_{11} & 1_{1} & 1_{1} \tag{t}\\
r_{2} & 1_{12} & 1_{2} & 1_{1}=0 \\
r_{1} & 1_{1} & 1 & 1_{3} \\
11 & r_{1} & r_{1} & r_{3}
\end{array}
$$

Whied may be writum

$$
\sum_{14} x_{i} i_{1} 11 \quad(i)
$$

 nimit $د$.
 satisfy equation (1). It appeats that it is alse a chare of seeomel wrder: Let

$$
I=\begin{array}{lll}
a_{11} & t_{12} & "_{13} \\
"_{12} & "_{12} & "_{2} \\
"_{1 ;} & "_{13} & " \ldots
\end{array}
$$

be the discrmmant of ($\bar{\prime})$. Them
anll

$$
I \prime \cdot \Delta=\begin{array}{ccc}
\Delta & 11 & 11 \\
11 & \Delta & 11 \\
11 & 1 & \Delta
\end{array} \quad \Delta^{3}
$$

 ximbulat lime.

$$
\begin{aligned}
& r_{1}+r_{2}+1 \\
& r_{1}+r_{3}-1
\end{aligned}
$$

$$
\begin{array}{ll}
n_{1}+"+"+ \\
u_{1}+" & 11
\end{array}
$$

('ase II. $د$ " but met all its first minors are zern. Equations (\because) hance ne mhtion, so that no point equation (an be fomed for the levers of the limit perints on the lines of equation (1). In fact, We have already seen that the limit points are two in mumber moly, the vertices of the two pemeils of limes detine by (1). The simplest forms into which egmation (1) ean be put without the nse of imaginary coind linates are ohtionsly

$$
\begin{aligned}
& u_{1}^{2}+u_{2}^{2}=0, \\
& u_{1}^{2}-u_{2}^{3}=0 .
\end{aligned}
$$

 already seen that the simplest form of the emation in this coise is

$$
\mu_{1}^{2}=0 .
$$

38. Poles and polars with respect to a curve of second class.

 fined by these erpations. The peint is called the terle of the lime. and the line is called the fertar of the peint with reseret to the
 theorem is then olsioms:

This relation is dualisule to that of s: th and all themems of that section ean be read with a "hange of " puint " tw" linc." " prl, " tw

$$
\sum \cdot 1_{k} \mu_{i} \mu_{k}=1
$$

$$
\sum u_{1} \cdot r_{i} r_{2}=0,
$$

 the themem is promed.

In casw a curve of secomal ratss pomsints of two puints, by a
 singular lines, which is the line eomereting the two perints. It maty be foumd by meatso of a theorem whith is dathistie to VIII, s. : t. and wheth mat be womdedas follows:

I! an!! f"inent $1 /$ is thlitn 1 "ll 4 lime I', anel ir amels are the limes
 "t seromed rlass, amel If is the liere juinim! II to the pule "t' p, the
 impates with respent tor alled \times

This thenerem is ilhastrated in Fig. : 0 , which alsu sugerests
 interaremion wi y and the line $(11)^{\prime}$.

EXERCISES

1. If the thate bertions of a thiansle move on there fixed lines and
 a conim.

 aml fmints:
 forna anduil in involution with itsinf.
 leme form at mane of fumts.

 line.

2. Projective properties of conics. We shall prove the follewing theorems whith are comerted with the equese of seerond order and involse propertive pencils or ranges.

Withont lose of generality we may take the vertioes of the two
 tively. and may take the puint of intersection of on pair of arrexpmotine lines ats $1 ;(1): 1: 0)$. The wo pencils are then

$$
\begin{aligned}
& x_{1}+\lambda r_{2}=0 \\
& r_{2}+\lambda^{\prime} x_{3}=0,
\end{aligned}
$$

and
where $\lambda^{\prime}=\frac{a \lambda+\beta}{\gamma \lambda+\delta}$. The point β lies on the line of the tirst pemeil, for which $\lambda=1$, and on the line of the seeond prowil, for which $\lambda^{\prime}=x$. Since these are worespunding lines in the projectisty,

F14; 21 we have $\delta=0$. Then β and γ cammet ranish, owing to the comblition $a \delta-\beta \gamma \neq 0$. Now, if $x_{1}: x_{2}: x_{3}$ is a point on two corresponding lines of the pencils, we have $\lambda=-\frac{r_{1}}{r_{2}}, \lambda^{\prime}=-\frac{r_{2}}{r_{3}}$, and hence

$$
\begin{equation*}
\gamma \cdot r_{1} r_{2}-\beta \cdot r_{2} r_{3}+r \cdot r_{3} r_{1}=0 . \tag{1}
\end{equation*}
$$

The peint $x_{1}: x_{0}: x_{3}$ therefore ties on a curve of seemod onder.
Combersely, if $n_{1}: y_{2}: y_{i}$ is a point on this curve of seromb order.
we have.

$$
y_{2}=\frac{-\alpha+\beta \frac{!!_{2}}{!_{1}}}{\gamma}
$$

But the line je, ining y_{i} th A has the paraneter $\lambda=-\frac{l_{1}}{4}$. and the line juining y_{i} to B has the pammerer $\lambda^{\prime}=-y_{2}$, ami womst

That the rumbe of semble order with the equation (1) patses

If a - 11 the embe (1) redhces to the two straght limes or $=0$

Eypation (1) maty be witent in the mone symmetrical fom

111

$$
r_{1} r_{2}+r_{3}+r_{r^{\prime}}^{\prime} a_{2} 11
$$

$$
r_{1}+r_{2}+10 .
$$

 line equation- of prints on the (wor ratere ate then

$$
"_{1}+\lambda "_{2}=1
$$

aml

$$
u_{z}+\lambda^{\prime} "_{j}=0 .
$$

wher, a-for I.

$$
\lambda^{\prime}=\begin{gathered}
n \lambda+\beta \\
\gamma \lambda
\end{gathered}
$$

 smadimer pmint thon satisfy ath chation of the form

"1 $\quad{ }^{\prime \prime}+\frac{"!}{\prime \prime}+{ }_{n}^{\prime \prime}=11 \quad(i)$

111.22

 the finla

The cruation of any lime through A is $x_{1}+\lambda r_{2}=0$ and that of any lime through ('is $x_{2}+\lambda^{\prime} r_{3}=0$. If these lines intersect on (t) we hate

$$
\lambda^{\prime}=\frac{r_{2} \lambda-r_{1}}{r_{3} \lambda}
$$

The comexpmonere of limes of the permil with vertex $1 /$ amb
 froses the theorma.

This is duatistic to theonem III.

 constant fior the retrert.

This is a corollary th theorems $1 / 1$ and 15 .
 fire puints, ne". finar at' which hir in astruight lime.

 whex l_{1}^{\prime} :and that with semtex $!$ ' in whirh

 interatetion of anmernding limes of thea

114,

This is dhatistice th thenem \TI.

 struight lill.

 'The opporite siles atre then fle amb
 reypertively.

Wentall first as-mand that the ehrve is withont simentar promis. Then the
 - matioht liate and may be taken as the beytiens of the triatisle of referemer. Let l_{1}^{\prime} bre the peint ($0: 0: 1$), $\quad I_{s}^{\prime}$ the print ($1: 1: 10$) , ant I_{5}^{\prime} (lue print (1: 1): ") When the erpation of the (H150 in, h (号) ,

$$
\begin{equation*}
r_{1}+\frac{r_{2}}{r}+\frac{r}{r_{2}}=0 \tag{i}
\end{equation*}
$$

F1ヶ. : 4

$|$| 1 | 1 | 1 |
| :---: | :---: | :---: |
| $!$ | $!$ | n |
| 1 | 1 | 1 |
| \because | a_{2} | n |
| 1 | 1 | 1 |
| \cdots | \ldots | \cdots |

$I_{3}^{\prime} I_{4}^{\prime}$ and $I_{i s}^{\prime} P_{1}$ intersect in the print $1: \frac{u^{\prime}}{u_{1}}: \frac{z_{3}}{z_{1}}$. The contition that these three proints lie on a straght line is

$$
\left|\begin{array}{ccc}
1 & \frac{u_{2}}{u_{1}} & \frac{z_{3}}{z_{1}} \\
y_{1} & 1 & \frac{z_{3}}{y_{2}} \\
y_{2} & z_{2} \\
y_{1} & u_{2} & 1 \\
y_{3} & u_{3} & 1
\end{array}\right|=0
$$

Whieh is readily seen to be the same as equation (i).
If the rame of serond order emsists of two interseeting straight lines, the theorem is still true, but the proof needs monditiation. When the points I_{1}^{\prime}, I_{3}^{\prime}, and P_{5}^{\prime} lie on one of the stratight lines and $I_{2}^{\prime}, I_{4}^{\prime}, I_{6}^{\prime}$ lie on the other, we have the theorem of Papprs (Vll. S.30). (Other distributions of the peints on the straight lines are trivial.
IX. Brianchon's theorem. If "thext!en is rircemservited alunt armere

This is dualistie to VIII, ame the pronf is left to the stmbent.

EXERCISES

1. Prowe that the entar of homology (sed lix. 9. S: 30) of two peot
 of the permils to the conie sememated by the permols.
2. Peowe that the axis of bemolose (see Ex. 10, S30, of two prot jertive rames is the line joining the gemints of erntart of the hase of the randers with the eonide orberated hy the manes.
3. Show that the lines draw thromeh a fixed print intersent a mand in a set of prints in incolution, the fixed points of the involution beine Whe points of centant of the taments from the fixed point.

4. Prese that if a pentagom is inseribed in a contre the intersmations

5. Prowe that if a phadrilateral is inswibed in a ronie the imber-
 butate li, on a traight lime.
6. State and prowe the datiatie thenem to Ex. ti.

 of the tangent at l and the side $1 / 1$, and $1 /$ is the internetion wh the

7. state amd prove the duadiatir thentem to lix. s.
 the lamgent at the vertien with the chposite sules lie on a staight lime.
8. State ant prow the dathind theorem to Ex. 12 .
9. Prowe that the eomplete qualmater formed hy fome prints of a monk has, as dacomal points, the prints of interseetion of the diatomal limes of the complete qualrikateral formed by the tanemts at the remies of the complete pathangle.

CHAPTER VI

LINEAR TRANSFORMATIONS

40. Collineations. A eollineation in a plane is a print transformation (S 5) expressed by the equations

$$
\begin{align*}
& \rho \cdot r_{1}^{\prime}=a_{11} r_{1}+a_{12} r_{2}+a_{13} r_{3}, \\
& \rho \cdot r_{2}^{\prime}=a_{21} r_{1}+a_{22} r_{2}+a_{23} r_{3}, \tag{1}\\
& \rho \cdot r_{3}^{\prime}=a_{31} r_{1}+a_{32} r_{2}+t_{33} r_{3} .
\end{align*}
$$

If the determinant $a_{1 k}$ is not equal to zero, these equations ran be solved for r_{1}, with the result

$$
\begin{align*}
& \sigma \cdot r_{1}=A_{11} r_{1}^{\prime}+A_{21} r_{2}^{\prime}+A_{31} r_{3}^{\prime} \\
& \sigma \cdot r_{2}=A_{12} r_{1}^{\prime}+A_{22} r_{2}^{\prime}+A_{32} r_{3}^{\prime}, \\
& \sigma \cdot r_{3}=A_{13} r_{1}^{\prime}+A_{32} r_{2}^{\prime}+A_{33} r_{3}^{\prime},
\end{align*}
$$

where $A_{1 k}$ is the cofactor of $r_{1 k}$ in the expansion of $t_{2 k}$ and where $A_{12}=0$.

If the determinant $n_{1 k}=0$, equations (-2) (anmot be whamed from (1). Fin this reason it is necessary to divide eollineations intu twor ratsers:

1. Comsingular millineations, for which $a^{\prime} \neq 0$.
\because singular mollintations, for whim $a_{2 k}=0$.
Wr shatl emsider moly monsinghlar onllineations in this text. thomerle sume examples of singular anllineations will be fomm in ther rexreines.

It is ohvions that for a monsingular collantation r, eamont bave suth valuts in (1) that $r_{1}^{\prime}=r_{2}^{\prime}=r_{3}^{\prime}=0$. Htane by (1) any point $r_{\text {, }}$,

(omsinger mow a straght line with the agnation

$$
u_{1} r_{1}+u_{3} r_{2}+u_{3} r_{3}=0 .
$$

All frints r_{0}, which satisfy this equation, will be transformed into prints r_{1}^{\prime}, which satiofy the equation

$$
u_{1}^{\prime} r_{1}^{\prime}+u_{1}^{\prime} r_{2}^{\prime}+u_{3}^{\prime} r_{3}^{\prime}=0
$$

where, hy (\because),

$$
\begin{align*}
& \tau \prime_{1}^{\prime}=A_{11}^{\prime \prime} \prime_{1}+A_{12} \prime_{2}+A_{13}{ }^{\prime \prime}{ }_{31}, \\
& \tau \prime_{2}^{\prime}=1_{21} n_{1}+1_{22} n_{2}+1_{23} n_{j},
\end{align*}
$$

It appears then that any stratight lime with reriminates ${ }^{\prime}$, is
 equations (\because) may be solved for $"_{1}$ with the realt

$$
\begin{align*}
& \lambda\left\|_{3}=\right\|_{13} \prime \prime_{1}^{\prime}+\left\|_{23} \prime_{2}^{\prime}+\right\|_{3 ;} \prime_{1}^{\prime}, \tag{1}
\end{align*}
$$

from which it appears that any line is the tramsfomed line of a mingur line.
bquations (3) expers in line coimplimates the same transformation that is expressed by equations (1) in point equirdinates. Fin it is casy to see that by equations (8) any permel of lines with the vertex $r_{\text {, }}$ is tramsformed into a perneil of lines with the vertex r_{i}^{\prime} and that the relation hetween x_{i} and x_{i}^{\prime} is exately that given by erpations (1). Equations (: ${ }^{\prime}$), harefore which express a tramsformation of stamght lines intostraight lines, also afforl a transformation of points into fuints in a sense dualistie tothat in whith equations (1) afforl a thansformation of st might lines into staight lines.

We will smm up the results thes far whatmed in the foblowing theorem:

 struisht lime.
 formed intu the puint r_{i}^{\prime}. where

$$
\rho r_{1}^{\prime}=u_{1} r_{1}+u_{2} r_{2}+u_{1} r_{3}
$$

 intor $r^{\prime \prime}$. where

$$
\sigma x_{1}^{\prime \prime}=b_{11} x_{1}^{\prime}+l_{11} r_{2}^{\prime}+b_{1,} r_{3}^{\prime} .
$$

Then the problut $l_{2} l_{1}$ is a substitution of the form

$$
\tau \cdot r_{i}^{\prime \prime}=r_{1} r_{1}+r_{i} r_{2}+r_{i, n} r_{3}
$$

 a collincation.

Moreoser, if h_{1} is as abose ant $l_{i z}$ is of the form

$$
\sigma \cdot r_{1}^{\prime \prime}=1_{1}, r_{1}^{\prime}+.1_{2}, r_{2}^{\prime}+1_{3}, r_{3}^{\prime} .
$$

the produet $l_{2} l_{1}$ is $\tau, r_{1}^{\prime \prime}=r_{1}, \quad \tau, r_{2}^{\prime \prime}=r_{2}, \quad \tau, r_{3}^{\prime \prime}=r_{3}$,
 inverse substation to l_{i} and is demoted hy $i_{1}{ }^{1}$. Onr work shows that the inverse transformation to a collineation ahmate exists and is itself a collinteation.

These tomsiderations prove the following therem:

We shall now prove the following theorems:

 tromstiarmed into $I_{1}^{\prime}, ~ I_{2}^{\prime}$ inter $I_{2}^{\prime}, I_{3}^{\prime}$ into $I_{3}^{\prime \prime}$, (tull I_{4}^{\prime} into $I_{4}^{\prime \prime}$.
'I's prove this we will first show that ome and only one colline an tion wists which transforms the fome fondamemat peints of the
 I ($1: 1: 1$) , repertively, into fom arbitary points $I_{1}^{\prime}\left(a_{1}: a_{2}: r_{3}\right.$), $I_{-}^{\prime}\left(\beta_{1}: \beta_{2}: \beta_{i}\right)$. $I_{i}^{\prime}\left(\gamma_{1}: \gamma_{2}: \gamma_{3}\right)$, and $I_{i}^{\prime}\left(\delta_{1}: \delta_{3}: \delta_{i}\right)$, hu threr of whith lie on a staight lime.
 ing perints, remembering that the fatur ρ mat have liffernt values for different pairs of pemats, we hate the following equations ont

$$
\begin{align*}
& \rho_{1} r_{1}="_{1}, \quad \rho_{11} \beta_{1}=="_{12} \cdot \rho_{i:} \gamma_{1}="_{11} . \tag{i}
\end{align*}
$$

$$
\begin{align*}
& \rho_{i} \delta_{1}=q_{11}+"_{11}+\pi_{1,} . \\
& p_{1} \delta_{2}="_{2 i}+"_{\ldots 2}+"_{23} . \tag{1i}\\
& \rho_{i} \hat{\delta}_{0}-"_{i 1}+"_{0, i=1}+"_{3: n} .
\end{align*}
$$

$$
\begin{aligned}
& \rho_{1} r_{1}+\rho_{1} \dot{\beta}_{1}+\rho_{1} \gamma_{1}-\rho_{1} \ddot{O}_{1} \quad{ }^{\prime \prime} \text {. } \\
& \rho_{1} n_{2}+\rho_{2}{ }_{3}+\gamma_{2}-\rho_{1} \delta_{2}-{ }^{11}, \\
& \rho_{1}{ }_{2}+\rho_{2} \gamma_{3}+\rho_{n} \gamma_{i}-\rho_{i} \delta_{3}-{ }^{11} .
\end{aligned}
$$

 wher formed from the matris

$$
\begin{array}{llll}
n_{1} & \beta_{1} & \gamma_{1} & \hat{\gamma}_{1} \\
n_{2} & \beta_{2} & \gamma_{2} & \hat{\gamma}_{0} \\
n & \beta & \gamma & \gamma_{1}
\end{array}
$$

 -...ential.

w! ! ! ! •

$$
\begin{array}{rlll}
l i & \text { li } & \text { li: } & \text { : } \\
& \text { li } & \text { li li }
\end{array}
$$

$I_{2}^{\prime}, I_{3}^{\prime}$ the same as I_{8}^{\prime}, amel I_{+}^{\prime} the simme ats $I_{4}^{\prime}, l_{1}=R_{2}^{\prime}$ and R is the infential substumtion. Hente we have as a cornhary to the above theorem:
IV. An! rellinertion with tanre fired peints mo thres of whioh are in

 in!t l"noils, aml an! surlh projectirity me!! he established in an intimite

'To prove the first part of the theorem let the point y_{i} be trans-
 tion (1), sothat

$$
\begin{aligned}
& \rho_{2} z_{i}^{\prime}=a_{11} z_{1}+\|_{12} z_{2}+d_{13} z_{3} \text {. }
\end{aligned}
$$

Then $y_{1}+\lambda z_{i}$ is transformed into ξ_{1}, where

$$
\begin{aligned}
\rho_{i 3} \xi_{1} & =a_{i 1}\left(!_{1}+\lambda z_{1}\right)+\|_{12}\left(!_{2}+\lambda z_{2}\right)+\eta_{13}\left(!_{3}+\lambda z_{3}\right) \\
& =\rho_{11}!_{1}^{\prime}+\lambda \rho_{22} z_{i}^{\prime}:
\end{aligned}
$$

whener
$\sigma \xi_{1}=!_{i}^{\prime}+\lambda^{\prime} z_{1}$
where

$$
\lambda^{\prime}=\frac{\lambda \rho_{2}}{\rho_{1}} .
$$

This mablishes a propetivity betwern the penints of the range
 and equations ($: 3$) the prow may be repeated for the lines of a peneil.

To prose that there are an intinite momber of nomsingular .anlineations which estahlish a given projectivity between the points of two ramers, it is mly neressur to show that there are an infinite manher of colline ations which transform any three puints I, or R

To prowe this, Jraw throurh $l i$ any straight line and take st and T two primts on it. Draw also throngh $h^{\prime \prime}$ any straight line and take $x^{\prime \prime}$ amel T^{\prime} ally two primis an it.

 are to a hare witent arhtrary there are an infinite mumber of requirel conllineations.

If it is required to determine a collineation which entahlinher a

 in an intinite mamber of wats, there are an intinite mantrer of the rapired collineations.
41. Types of nonsingular collineations. A wollimeation hats a fired foint when $x_{1}^{\prime}-x_{1}$ in equations (1), 各 to. The tixed peints are therefore given by the aphations

$$
\begin{align*}
& \left(t_{11}-\rho\right) r_{1}+u_{12} r_{2}+u_{1 ;} r_{3}=0, \\
& a_{21} x_{1}+\left(d_{22}-\rho\right) r_{2}+{ }_{20} r_{3}=0 \text {, } \tag{1}\\
& "_{0,1} r_{1}+{ }_{0,2} r_{2}+\left(\|_{3, i}-\rho\right) r_{0}=1 \text {. }
\end{align*}
$$

The necersary and suthicient eomblitions that thene eqpations have a solution is that ρ shomht satisfy the mation

$$
\left\{\begin{array}{lll}
a_{11}-\rho & "_{12} & a_{13} \\
a_{21} & "_{32}-\rho & a_{23} \\
a_{31} & a_{32} & a_{33}-\rho
\end{array}=0 .\right.
$$

 - Muations

$$
\begin{align*}
& \left(a_{11}-\rho\right) u_{1}+a_{21} u_{2}+a_{31} u_{3}=0, \\
& u_{12} u_{1}+\left(\|_{02}-\rho\right) \prime_{2}+u_{: 2} u_{a}=0,
\end{align*}
$$

and the moressary and sulticiont comblition that these equations hater a solution is

Eiphations (\because) and (1) atre the same and will he writurn

$$
f(p)=11 .
$$

 amd it is a tripherat whell

$$
f^{+\prime \prime}\left(\rho_{1}\right)-2\left[\left(\mu_{11}-\mu_{1}\right)+\left(1_{2:} \mu_{1}\right)+1, \mu_{1}\right) \mid \quad 11
$$

We may mow distmguish three caste:

1. When all the first minom of the determinamt $f\left(\rho_{1}\right)$ do not vanish. Epuations (1) and (:3) hatre each a single solution. The eollineation hat then an single fixed feint and a single tixed line eomeremoding to the rathe ρ_{1}. The rest ρ_{1} maty be a simple a donble, or a triple rowt

2. When all the first minoms of $f\left(\rho_{1}\right)$ ramish, hat met all the
 muderndent cymation. The codlingation hats then a line of tixed f"ints and a perneil of tixed lines comeremoling to the value ρ_{1}.
 meressaril! satistioch, and it maty or may mot be a wiple root.
3. When all the secomd minuss of $f^{\prime}\left(\rho_{1}\right)$ ramish. Eymations (1) and (:3) are satistiod by all values of x_{2} and x_{i} resperetively. and the collincation leaves all peints and lines tixed. 'Thereot ρ_{1} is then a triple row of ($\overline{5}$) sime cignations (6) and ($\overline{5}$) are sattistionl.

From this it follows that a collineration lins as metny, fismel limes as

Froms 12 it follows also that in eror! firen line lies at loast one

 tw firul limes is firs, .

 if the perint $r_{1}=1$, $r_{j}=1$, $r_{k}=1$ is tixtel, then $l_{!}(1)$, 40 .

 triangle of referenere. Thern the colline mion is

$$
\begin{aligned}
& \rho .1_{1}^{\prime} H_{1} r_{1} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& p r^{\prime}: \quad{ }^{\prime} r^{\prime}{ }^{2}
\end{aligned}
$$

Type I ．

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=r_{1} r_{1} \\
& \rho \cdot r_{2}^{\prime}=\quad h_{1} r_{2}, \\
& \rho \cdot r_{3}^{\prime}=\quad r r_{3} .
\end{aligned}
$$

The emblineation has only the lixed puints A, f ，${ }^{\prime}$ and the

TYロ： 11.

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime} \quad \quad \quad r_{1} r_{1}, \\
& \rho \cdot r_{2}^{\prime}=\mu \mu_{2} . \\
& \beta \cdot r_{:}^{\prime}=\quad \therefore r_{3} \text {. }
\end{aligned}
$$

 It in ratloni a humeron！！！

TYut：Ill．

$$
\begin{array}{cc}
\rho \cdot r_{1}^{\prime} & r_{1} \\
\rho r_{2}^{\prime} & r_{2} \\
\rho r_{3}^{\prime} & r_{3}
\end{array}
$$

All prints amd lines are fixed．It is the identical transformation．

 Ther other mant amtatn mbe of the tixal perints，and we will take

$$
\begin{aligned}
& \rho \cdot i_{1}^{\prime} \quad t_{11} r_{1}+t_{1 W^{\prime}} \ldots \\
& \text { p.r' }{ }_{2}^{\prime} \quad " r_{i} \text {. } \\
& \rho \cdot r_{3}^{\prime}=\quad{ }^{\prime}{ }^{\prime}, r^{\prime} ;
\end{aligned}
$$

 fixal 1＂nini

$$
\begin{array}{r}
\left({ }_{10}-\pi_{2}\right) r_{1}+r_{2} \\
(1) \\
\left(1,{ }^{\prime}\right)
\end{array}
$$

Tupeli.

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=u r_{1}+r_{2} . \\
& \rho \cdot r_{2}^{\prime}=\quad u x_{3}, \\
& \rho \cdot r_{3}^{\prime}=\quad b x_{3} .
\end{aligned}
$$

The conlineation hats only the fixed points A and $(x$ and the tiand lines. 10° and 15^{\prime} :

Tupe 1.

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=u x_{1}+x_{2}, \\
& \rho \cdot x_{2}^{\prime}=\quad u x_{3}, \\
& \rho \cdot x_{3}^{\prime}=\quad u x_{3} .
\end{aligned}
$$

The collineation has the line of fixed points At' and the $\mathrm{p}^{\text {wacil }}$ of tixed lines with its vertex at $:$

In wither Type IV or V the pint l may he taken at pleasmre ont the line lir:
(: rimlimations with omly me fixed pmint. Take the fixed peint as ((1:0:0). The mollineation has alse a fixed line which most patis through $A^{\text {: Salie it as }} \operatorname{BC}\left(x_{3}=0\right)$. The collineation is now

$$
\begin{array}{lr}
\rho \cdot r_{1}^{\prime}=u_{11} r_{1}+a_{12} r_{2}+u_{13} r_{3}, \\
\rho \cdot r_{2}^{\prime}= & u_{22} r_{2}+u_{33} r_{3}, \\
\rho \cdot r_{3}^{\prime}= & u_{33},
\end{array}
$$

Equation ($\overline{\text { i }}$) is now $\left(h_{11}-\rho\right)\left(a_{22}-\rho\right)\left(h_{33}-\rho\right)=0$, and since
 The p"int A (1):0:1) takorn at pleasine is transforment int"
 $n_{10}=1$. The wefficionts a_{12} and a_{23} cammen vanish or we have the

Thely.

$$
\begin{aligned}
& \rho r_{1}^{\prime}=r x_{1}+r_{2}, \\
& \rho \cdot I_{2}^{\prime}=\quad u r_{2}+x_{3}, \\
& p, r^{\prime}=\quad \quad t x_{3} .
\end{aligned}
$$

 1-2

EXERCISES

 on at staight lime.

 the suthrongs.

 puint or a lime of pumts for wheh the tranammed fuin is imbere mantu. Wre shath rath this the simsular primt or lime. If there is a
 lime wheh may on may mat pas through the smathar prime. If there is a sharala lime every peint wet on the lime is tamstomed inte a
 fants and from them show that the singular entlanations amsint of the folloming ! ! 1":

1. Whe singular print f^{\prime}, a fixed line / mat through l^{\prime}, two fixed luints on $/$.

$$
\begin{aligned}
& \rho, r_{1}^{\prime}=r_{1}, \\
& \rho \cdot r_{2}^{\prime}=\quad \quad\left(r_{1}^{\prime},\right. \\
& p, r_{i}^{\prime}=0 . \quad(1,=1)
\end{aligned}
$$

II. Gne simgular point r, a fixal lime mot through r, one fixent print on 1 。

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=r_{1} r_{1}+r_{2}, \\
& \rho \cdot r_{2}^{\prime}=\quad \quad a, r_{2}, \\
& \rho \cdot r_{3}^{\prime}=0 .
\end{aligned}
$$

 "1/f tisul.

$$
\begin{aligned}
& \mu r_{1}^{\prime}=-r_{1} . \\
& p r_{2}^{\prime}= \\
& \mu r_{3}^{\prime}=0 .
\end{aligned}
$$

$$
\begin{array}{ll}
p \cdot r_{1}^{\prime}= & r_{0} \\
p, r_{2}^{\prime} \\
p, r^{\prime} & 11
\end{array}
$$

V. One simgular pint P, a fixed line p through P, no point of p fixed.

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=\quad x_{2}, \\
& \rho \cdot r_{2}^{\prime}= \\
& \rho \cdot r_{3}^{\prime}=0 .
\end{aligned} \quad x_{3},
$$

Vl. A simgular line μ, a tixed point r on μ.

$$
\begin{aligned}
& \mu \cdot r_{1}^{\prime}=\quad r_{3}^{\prime}, \\
& \mu \cdot r_{2}^{\prime}=0, \\
& \rho \cdot r_{3}^{\prime}=0 .
\end{aligned}
$$

Vh. A singular lime f, a fixed point P not on μ.

$$
\begin{aligned}
& \rho \cdot x_{1}^{\prime}=x_{1}, \\
& \rho \cdot r_{2}^{\prime}=0, \\
& \rho \cdot r_{3}^{\prime}=0 .
\end{aligned}
$$

42. Correlations. The equations

$$
\begin{align*}
& \rho u_{1}^{\prime}=u_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}, \\
& \rho u_{2}^{\prime}=u_{21} x_{1}+u_{12} r_{2}+u_{23} x_{3}, \tag{1}\\
& \rho u_{3}^{\prime}=a_{31} x_{1}+u_{32} x_{2}+u_{33}, r_{3},
\end{align*}
$$

where x_{i} are point coindinates and u^{\prime} are line coïrdinates, define a transformation of a point into a line. Such a tramsformation is called a corrolution. As in the ease of eollineations, we shall distingrish between nonsingrular and singular comrelations acording as the determinant $\mid a_{i k}$ does not or does vanish, and shall consider only nonsingular correlations. Equations (1) can then be solved for x. with the result

$$
\begin{align*}
& \sigma x_{1}=A_{11} u_{1}^{\prime}+A_{21} u_{2}^{\prime}+A_{31} u_{3}^{\prime} \\
& \sigma x_{2}=A_{12} u_{1}^{\prime}+A_{22} u_{3}^{\prime}+A_{022} u_{3}^{\prime} \tag{2}\\
& \sigma x_{3}=A_{13} u_{1}^{\prime}+A_{23} u_{2}^{\prime}+A_{33} u_{33}^{\prime}
\end{align*}
$$

where $t_{\text {te }}$ is the cofactor of $a_{i k}$ in the determinamt $\left|a_{t k}\right|$. Every straight line $"^{\prime}$ is therefore the transomerl element of a perint $x_{2}{ }^{\prime}$.

Comsiber now the points of a line given by the equations

$$
u_{1} x_{1}+u_{2} r_{2}+u_{: 3} x_{3}=0
$$

where ", are (onntants. By (\because) these points go into a pencil of lines the vertex of which is the point r_{i}^{\prime}, where

$$
\begin{align*}
& \rho^{\prime} r_{1}^{\prime}=.1_{11}^{\prime \prime}{ }_{1}+.1_{12} "_{2}+1_{1: 3} \prime_{n}, \\
& \rho^{\prime} r_{2}^{\prime}=I_{21}^{\prime \prime} I_{1}+I_{2 n} n_{2}+I_{2!} "_{3}, \tag{3}\\
& \rho^{\prime} I^{\prime}=1_{01}^{\prime \prime} \prime_{1}+1_{32} \prime_{2}+1_{13}{ }_{3}^{\prime} \text {. }
\end{align*}
$$

W'e may express this ley saying that the lime ", is tramsoment
 with the result

$$
\begin{align*}
& \sigma u_{1}=t_{11} r_{1}^{\prime}+t_{21} r_{2}^{\prime}+t_{31} r_{3}^{\prime}, \\
& \sigma u_{2}=t_{13} r_{1}^{\prime}+t_{2} r_{2}^{\prime} r_{2}^{\prime}+t_{32} r_{3}^{\prime}, \tag{4}\\
& \sigma u_{3}=u_{13} r_{1}^{\prime}+t_{23} r_{2}^{\prime}+t_{33} r_{3}^{\prime},
\end{align*}
$$

wery peint is the tamsformed arment of one and only whe line.
 (1). We shall consider them as given with (1) and sum up our raults in the following thereme:

 linar tramemation bey which the peint x_{1} is tramsformed inte the primt $A^{\prime \prime}$: that is, a whlineation. Therefore the cerredations do mot
 of an! comelation exists and is a corrmation.

Wie all therefore prowe the following the orems:

 1 , intw, 1 ?

 13...ervintion.

The prowfo of these theorems are the same at those of the cor-

By mpations (1) a puint $r_{\text {, }}$, lise on the line u_{1}^{\prime}, into which it is transformed when and ouly when

$$
\begin{align*}
& +\left(u_{23}+u_{3: 3}\right) \cdot r_{3} r_{3}=0 . \tag{5}
\end{align*}
$$

That is, x_{1} lies on a conie k_{1}.
Similaty, from cupatims (i) a line u_{i} Iasses through the pemt x_{i}, into which it is transmoned when and only when

$$
\begin{align*}
& +\left(1_{33}+1_{02}\right) u_{2} u_{3}=0 . \tag{i}
\end{align*}
$$

That is, u_{i} enselops a comic K_{z}
It is wident that the conies k_{1} and k_{2} are not in genemal the same. Their exact relations to cath wher will be determined later in this seetion. In the meantime we state the above result in the following theorm:

 which, in atereral, is not the semene as the first.

Any fuint P 'of the plane may be eonsidered in a wofoh mamer: as either an miginal peint which is transomed be the correlation into a line or ats a transformed perint ohtained from an wiginal line. If I is an original point it comeremols to a line f^{\prime} whese

The lime f and f^{\prime} du not in gencral coinmith. When they do
 That P shomblo a peint of a domble pair is is necesanary and sutti-
 ter pr"merimat: that is, that the caniolinates of I shombl satisfy dar cypatinn

$$
\begin{aligned}
& { }_{11}{ }_{11}-\rho \|_{11} \quad{ }_{12} \quad \rho{ }_{11} \quad "_{1 ;} \quad \rho^{\prime \prime}{ }_{11}
\end{aligned}
$$

 nature of the domble pairs amd of the conics k_{1} and k_{2} ．So a pros liminary stel we shall prove the thememe：

月はハに
whener

$$
\left.\left(\rho+\frac{1}{\rho_{1}}\right)\right)_{1}=\left(\prime_{11}+n_{1 i}\right)!_{1}+\left(n_{i 2}+\prime_{2,}\right)!_{n}+\left(n_{2,}+n_{1,3}!_{!}\right.
$$

These hast equations are exacty these which thetermine the ferlar of $/$ with rexpert to κ_{1} ，and the thenem is prosed．

 mates its equation wan be pat in the fomm

$$
\begin{equation*}
r_{2}^{2}+\left(d_{12}+\prime_{21}\right) r_{1} r_{2}=0, \tag{!1}
\end{equation*}
$$

 （m）
 now expersod hy the eymatoms

$$
\begin{aligned}
& \rho u_{1}^{\prime}=n_{12} r_{2}, \\
& \rho \prime_{2}^{\prime}="_{21} \cdot r_{1} . \\
& \rho u_{1}^{\prime}=r=
\end{aligned} r_{3} .
$$

＇リ： 1.

$$
\begin{aligned}
& f^{\prime \prime}=u r_{i}, \\
& \rho^{\prime \prime}=r_{1}, \\
& f^{\prime \prime \prime}=r
\end{aligned}
$$

The conte x_{1} hat now the whation $x_{3}^{2}+2 x_{1} x_{2}=0$, and the corredat tion is a polarity withreseet to this conic. (omsersely any polarity with reperet to a nomeremerate eonice can be expersed in this fome

The equation (s) now beromess $a^{2}(1-\rho)^{3}=0$, and equations ($\overline{7}$) are intentieally satisfied when $p=1$. Hance in a poldrity etery ror-
 beromes ans $+2 u_{1} u_{2}=0$. whith is the line equation of K_{1}^{-}. Hence in a milarity the coniex K_{1} aml K_{2} comeinde.
'TrPE II.

$$
\begin{aligned}
& \rho u_{1}^{\prime}=\quad a r_{2} \cdot \\
& \rho u_{2}^{\prime}=l_{1} r_{1} \cdot \\
& \rho u_{3}^{\prime}=\quad \quad r_{3 ;} \cdot \\
&
\end{aligned}
$$

The conir K_{2} has the line eynation

$$
(a+l) u_{1} u_{2}+\cdots l_{1} u_{3}^{2}=0
$$

or the proint equation

$$
t \text { (ab } x_{1} r_{2}+(1+b) r_{3}^{2}=0,
$$

and the relation of the two comies K_{1} and κ_{2} is as in Fig. 2 . 5 . Equation (K) heeomes

$$
(1-\rho)(1-h \rho)(b-u \rho)=0
$$

which has three mequal reots. The comelation has acomedinery
 P ant the line 16 , the point C' and the hine ir:

TYpes 1 and $1 \mid$ arise from the assmbytion that there is a domble jair of which the peniat lies outside the eomie. If there is mo - weh pair, there manst be at least man of whirla the perint hes on the emonie. In this rase take the perint as
 $P(0: 1: 11$) withont ehamsing the form of eftation (a). By theorem V the line of the domhke

$$
\begin{aligned}
& \rho u_{1}^{\prime}=\quad{ }_{1} r_{2}+\mu_{1} r_{3} . \\
& \rho \prime_{:}^{\prime}={ }_{1}, r_{1} . \\
& \rho u_{3}^{\prime}=-u_{1,3} r_{1}+r_{3} .
\end{aligned}
$$

 hypothesis，mates $e_{\text {el }}=d_{12}$ ．W＇e hate thally，for the equations of the correlation：

I＇re III．

$$
\begin{aligned}
& \rho u_{1}^{\prime}=\quad \quad r r_{2}+l_{1} r_{3}, \\
& \rho u_{2}^{\prime}=r r_{1} \\
& \rho u_{3}^{\prime}=-l_{1} r_{1}+r_{3},
\end{aligned}
$$

where $a=h$ is mot exploted．The lime equation of h_{2} is now

$$
x_{1}^{2} u_{2}^{2}-u^{2} u_{3}^{2}-\because \quad a_{1} u_{2}=0,
$$

and the eorresponding point equation is

$$
r_{1}^{2} x_{1}^{2}+r_{3}^{2}+2 r_{1} r_{1} r_{2}=0 .
$$

The two conics K_{1} and K_{2} lie therefore in the position of Frig．2t．
Ther egration（ N^{\prime} ）for ρ hat the triple root $\rho=1$ ，ant the（on＇ relation has only onte donble pair comsisting of the line peoint f alla the line 1% ．

B．Let the amie h_{1} deyenerate int＂twen intersertin！strat，ght limes．We may tater the equa－ tions of the limes in the from

$$
a_{11} r_{1}^{2}+r_{3}^{2}=11:
$$

＂hッルッ＂

$$
\begin{array}{ll}
n_{\ldots 2}-n . & a_{21}=-a_{12} \\
"_{22}=-n_{23} . & n_{31}=-a_{13} .
\end{array}
$$

The print l is asain taken

F1．．．2 as the puint of a domble pair

 i． 110%

$$
u_{i=}^{2}(1+\rho)^{2}(1 \quad \rho)-1 .
$$

 1 we hate $_{10}=0$ ．

Wie have then, finally.
True IV。

$$
\begin{aligned}
& \rho u_{1}^{\prime}=\alpha r_{1}+r_{1} r_{3}, \\
& \rho u_{2}^{\prime}=-r_{1} r_{1}, \\
& \rho u^{\prime}=
\end{aligned}
$$

where the emality of the coedieciente is mot excheted.
The comic K_{2} has now the equation

$$
\prime \prime \prime_{2}^{2}+l_{1}^{2} u_{i}^{2}=11 .
$$

which is that of two pencils with their vertiees on Afs. The relation of κ_{1} and κ_{2} is show in Fig. $: \begin{gathered}\text { on }\end{gathered}$
(: Lat the romir K_{1} detemorute intotern wimentent struight limes. Take the equation of K_{1} as $\quad r_{3}^{2}=0$.
Thar disenswime proweds as in the pre-
 equal twero. Whe have, acoordingly.

$$
\begin{aligned}
& \rho u_{3}^{\prime}=r_{1} r_{1} . \\
& \rho \mu_{3}^{\prime}=\quad \quad r_{3} .
\end{aligned}
$$

F14.27

The whic κ_{2} has the equation $w_{s}^{2}=11$. Which is that of a domble pernell of lines with the vertex A. The relation of the two comies

$$
r^{\prime}(1+\rho)^{\prime \prime}(1-\rho)=1 .
$$

The rest $\rho=1$ gives the penint 1 ats a peint of a domble pair of which the line is fre: The ront $p=-1$ gives any puint onthe line pro. .s. that if of is ally pint on lar it is a pmint of a dumble pair the line of whinh is .1\%.

EXERCISES

1. Find the *

2. Take amy pent l. Show that the line into whirh P is tramformed
 four pumts of intersedinn with k_{1} of the two tangente drawn from $/$

 sertion of the font tangents drawn to κ_{2} from the funts in whinh p

 exarly and exphan the construetion in Type I .
3. Show that if prey point lies in the line into whirh it is trans formed be a corelation, the correlation is a singular onte of the form

$$
\begin{array}{lr}
\rho \prime \prime_{1}^{\prime}= & \quad{ }_{12} r_{2}+{ }_{1 ;:}, r_{3}, \\
\rho \prime_{2}=-"_{12} r_{1} & +{ }_{23}, r_{3}, \\
\rho \prime_{3}^{\prime}=-"_{13} r_{1}-"_{2} r_{2} .
\end{array}
$$

stuly the corvelation.
43. Pairs of conics. The preeding results may le given an interestins appliation in stadying the relation of two roniss to (atela wher, experially with referemee to points and limes which are the poles and polars of ateh wher with respect to both the conics.
1.4

$$
\begin{equation*}
\sum d_{1 k} r_{i} r_{k}=11 \tag{1}
\end{equation*}
$$

alld

$$
\Sigma r_{1, k} r_{i} r_{k}=0
$$

 simsular enllineation whim may be expressed hy the mpations

$$
\begin{align*}
& \rho\left(b_{12} r_{1}^{\prime}+b_{1} r_{2}^{\prime}+b_{1} r_{3}^{\prime}\right)=a_{1} r_{1}+a_{0,2} r_{2}+l_{1} r_{0}, \\
& \rho\left(l_{1} r_{1}^{\prime}+l_{1} r_{1}^{\prime}+l_{1} r_{3}^{\prime}\right)-H_{1} r_{i}+\left\|_{1} r_{2}+\right\| .
\end{align*}
$$

same pulte with respert (1) (1) athl (\because) . Eatch fixed point of (\because) will be paired with some fixed line of ($: 8$ as a pole and polar. These foints and lines we shall refor th biefly as emmon folar elements.

We shall hate as mathe armarements of emmmon polar elements as the we aremorments of fixed points of (\because) and may elassify them intw the type given in

 we notiee tirst that mo peint can be the perle of a line throngh it.

For if l were the pule of the for example, (wombt be the pule of either . 16^{\prime} or Br^{\prime}.
 Af womh be tangent to eard of the conites (1) ant (\because) and A womld be the pelle of $1 ; 0^{\prime}$: 'Then if /1 were aly point Whatrome on l:C'. aml E its harmonic emplugate with re-
 EA womld the the f"elar of (1) with respert (w buth (1)

$$
\begin{array}{r}
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1 \\
{ }^{2} r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=11
\end{array}
$$

$$
\begin{align*}
& \rho r_{1}^{\prime}=t_{1} \cdot r_{1}, \\
& \rho r_{2}^{\prime}=\quad \quad 4 r_{\because}= \tag{ii}\\
& \rho r_{:}^{\prime}=
\end{align*}
$$

 pole of ate of the lines . 16 aml lier whim phas thromelt it, and herner - lies ont the 1 wo romics. But ${ }^{\prime}$ (:amm lex the fule of lif: fons if it were. 1 would be the pelte ai 18: and the line 10^{\prime} would be 1 ath(ratht th the comber at at amb interacerting them abian at $\quad($ whiol is impersithe. 'Therefome 1 ' is the

 taker llu ande of corimlanates as in

$$
\begin{equation*}
r_{1} r_{2}^{2}+\pi_{n} r_{0}^{2}+\ddot{-} n_{1} r_{1} r_{2} \quad 1 \tag{7}
\end{equation*}
$$

 the comic: as

$$
r_{2}+r_{3}+\ddot{2} r_{1} r_{2} \quad 0
$$

(")
leaving the expation of the wher in the eremetal form (7). The

1.1

$$
\begin{align*}
& \rho\left(r_{1}^{\prime}+r_{3}^{\prime}\right)=a_{1} r_{1}+d_{1} r_{2}, \\
& \rho \cdot r_{3}^{\prime}=4, r, \\
& \rho \cdot r_{1}^{\prime}=r_{1 .} r_{i}+\left(11_{1}-n_{i j}\right) r_{2} \\
& p r_{2}^{\prime}=\quad \text { "r. } r_{0} \tag{!}\\
& p \cdot I_{3}^{\prime}=\quad{ }^{\prime} r_{3} \text {. }
\end{align*}
$$

Tirl: Ill. There in lime $i=$ (lis. : 1) (anh |wint of whim is

 with the aldition that now $"_{t}="_{z}$ ．in wrder that the wollineation（i）
 redured to the lums

$$
\begin{array}{r}
r_{1}^{\ddot{2}}+r_{2}^{\ddot{2}}+r_{3}^{2}=0, \\
r_{1}^{*}+r_{2}^{2}+u+r_{3}^{2}=0, \tag{11}
\end{array}
$$

and the collineation（：3）beromes

$$
\begin{align*}
& \rho \cdot r_{1}^{\prime}=r_{1} \\
& \rho \cdot r_{2}^{\prime}=\quad r_{2} \tag{1:2}\\
& \rho \cdot r_{3}^{\prime}=\quad \quad\left(r_{3} .\right.
\end{align*}
$$

The two conios are tamgent at two points，namely the points in Which the lime $/ \mathrm{B}^{\prime}$ meets the eomios．This is easily seen from the ＂ghations．We may alse areme that if fir merts（ 10 ）in h ．the
 to both comics．similarly，if.$/ /$ is the other penint of intersection

 alld tangent at mo other p＂int．Fakre an！pemint on the comie（1）as I，aml the tamgent la（ 1 ）at $1 /$ at $.1 /$ ． Ther＂glation of（1）then is

$$
r_{2}^{2}+2 \cdot r_{1} r_{0}=11
$$

While that of (\because) ，sinme it is known

$$
\begin{array}{lr}
\rho \cdot r_{3}^{\prime} & { }_{1}, r_{3}, \\
\rho \cdot r_{2}^{\prime} & { }_{4}, r_{2}+{ }_{4}^{\prime} r_{3}, \\
\rho \cdot r_{1}^{\prime}= & r_{1}, r_{1}+t_{1}, r_{2}+{ }_{4}, r_{3} .
\end{array}
$$

In whene that this shomblat her

Fは．．：： 2

$$
\begin{aligned}
& r_{z}+\theta_{1} r_{i} \quad 11 \\
& r_{\dot{2}}^{2}+\ddot{\prime}, r+\ddot{\prime} r_{1} r_{0}=1 \text {, (1t) }
\end{aligned}
$$

and (he collineation ($i=$) is

$$
\begin{aligned}
& \beta_{1} 1_{1}-\mu_{1}+n_{1} r_{2}=a_{1}+r_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mu \cdot r_{1}^{\prime}=r=\quad \quad r,
\end{aligned}
$$

Whimb is of ly" VI, 冬 11.
 in ammlar frim.

$$
\begin{align*}
r_{2}^{2}+\because r_{1} r & =11 \\
r_{2}+r_{3} r_{3}^{2}+\because r_{1} r & =11 \tag{16}
\end{align*}
$$

$$
\begin{array}{ll}
\rho \cdot r_{1}^{\prime}=r_{1} & +1, r_{i} \\
\rho r_{2}^{\prime}= & r_{2} . \tag{1~}\\
\rho \cdot i_{:}^{\prime}= & r_{1} .
\end{array}
$$

It is sommetimes important to find, if pessible, a self-polar triangle (ommont th two conies. The foregoing disemssion leats to the following theorem:

I! tren romics intoroset in finur distinet peints they hate one and

It is anly when two eonics hate a common selfeplar tiangle
 as in Tyues 1 and 111.

EXERCISES

1. L'owe that the diagomal triangle of a complete quatranghe whose

 common self-pelar triangle of two romies in the pesition of Type 1 .

 the serentype of singular collimations given in Re. t. S 11. (Notice

 (omber 1) comsints of a stratigh lime taken domble that lime is the simgutar line f, ath its pole P with respet to the monie (2) is the fixed fuint.)
2. The projective group. As we have seent her penher if two collineatims is a collineations. amd the prome of two comrelatims is a collineation. It is mot diffient when that the prodne of a collineatinn and a comelation in eithere meler is a comedation. The inserse tamsonmation of either a mellimation or a comelation
 Hatere we hater the Howsem:

 whl!
 consists of the stady of properties which are insaman mater this groul.
 of straghth-line tigures whith referene to the manner in which lines intersect in peints or peints lie oun straght lines. Such themems
 invarime umber the projertive gromp and projetive grentery is nor therefore collererned whithe metrial promerties of tigures.

 projertive gronmery

By means of a collination any comic withont singular peints may be transformed intw the conis.

$$
r_{1}^{2}+r_{2}^{2}+r_{2}^{2}=0 .
$$

This was virtually proved in s:3.5 when we showed that any mplat tim of the second order with diseriminant mot zem may be redured to the athese form. Bat any bansfomation of eraindinates is expressell be a linear substitution of the variablese ame this substitution may be interpered as a collineation, the coindinate systembering
 formenl into any other whir withut singular points by a collineation. Similaty. aly ronic with obe simglar puint maty be transormed
 an intunter monler of singular peints maty be transformed into ans

 is not madt.

Cortesian coürdmates. Since it is evident that all points at infinity momain at intinity, the transformations must be of the form

$$
\begin{align*}
& \rho \cdot r^{\prime}=a_{1} r+a_{2} y+a_{3} t, \\
& \rho y^{\prime}=l_{1} r+b_{2} y+l_{3} t, \tag{1}\\
& \rho t^{\prime}=t .
\end{align*}
$$

or in nonhomogeneons form

$$
\begin{align*}
& x^{\prime}=a_{1} r+u_{3} y+a_{3}, \\
& y^{\prime}=b_{1} x+b_{2} y+b_{3} . \tag{ㅡ}
\end{align*}
$$

Tramsormations of this type are called affine, since any point in the finite part of the plane is transformed into a similar peint. We procered to tind the comblitions muter which an aftime transionmation will have the properties required abeve.

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any two points which are transformed respertively intw ($. x_{1}^{\prime}, y_{1}^{\prime}$) and ($x_{2}^{\prime}, y_{2}^{\prime}$), then, by hyothesis.

$$
\left(x_{2}^{\prime}-x_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}-y_{1}^{\prime}\right)^{2}=k^{2}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right],
$$

troull whith we obtain

$$
\begin{aligned}
& \left(\mu_{1}^{2}+l_{1}^{2}\right)\left(r_{2}-x_{1}\right)^{2}+\left(u_{2}^{2}+l_{2}^{2}\right)\left(y_{2}-y_{1}\right)^{2}+\ddot{2}\left(u_{1}^{\prime \prime \prime}+l_{1} l_{2}\right)\left(r_{2}-r_{1}\right)\left(y_{2}-y_{1}\right) \\
& \quad=k^{2}\left[\left(r_{2}-r_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right] .
\end{aligned}
$$

Sine this must be true for all values of the variables. we have

$$
\begin{aligned}
u_{1}^{2}+l_{1}^{2} & =k^{2} . \\
a_{2}^{2}+l_{2}^{2} & =k^{2} . \\
u_{1} u_{2}+l_{1} u_{2} & =0 .
\end{aligned}
$$

From this follows algolmaically $b_{2}= \pm \pi_{1}, b_{1}=\mp u_{2}$. Also an angle ran always be fomul sum that $\mu_{1}=k \cos \phi, b_{1}=k \sin \phi$. Eflationis (2) can then lue writen

$$
\begin{align*}
& r^{\prime}-k(\operatorname{rns} \phi-!\sin \phi)+a \tag{3}\\
& y^{\prime}-1(r \sin \phi+y \cos \phi)+l .
\end{align*}
$$

The prowne of any two transumations of the fom (:3) is abo of the form (3). This (:an be sham be direet substimtion.
 whim mulapline distames hy a comstam. It is alson evident that
 Hente the following therem:

T"O this we all the following thenem:

 mant be fixed ar interehamed. Themem Il may therefore be. restated an follow:

 fommation (: \because).

$$
\begin{aligned}
& r^{\prime}=r+u \\
& !^{\prime}=!+l
\end{aligned}
$$

The trantations evilemty form a mbromp of the metrial (rwar!
11. Rintation aluent atirtil pmint.

A romatom atom any other poin is the tamsform (Thus, if a^{\prime} is a rotation abont (a, b), $l^{\prime}=T A^{-1}$, where A^{\prime} is the tramsformation

$$
n^{\prime \prime \prime}\left\{\begin{array}{l}
x^{\prime}-u=(x-a) \cos \phi-(y-b) \sin \phi, \\
y^{\prime}-l=(x-a) \sin \phi+(y-b) \cos \phi .
\end{array}\right.
$$

The substitutions h and h^{\prime} form each a sutgremp of the metrical group.
111. Menmitication.

$$
M\left\{\begin{array}{l}
x^{\prime}=k, x \\
y^{\prime}=k y .
\end{array}\right.
$$

This is of Type II, s 41, the fixed perint being the origing, and the line of fixed P eints being the line at intimity. The permel of fixed lines is the peneil with its rertex at (0, 1))

A magnification la' with the fixed pemint (16 , h) is the transform of M by T : thus, $H^{\prime}=T M T^{-1}$, where V^{\prime} is the transfomation

$$
M^{\prime}\left\{\begin{array}{l}
x^{\prime}-a=k(r-l) . \\
y^{\prime}-b=k(y-l) .
\end{array}\right.
$$

The transformations M and V^{\prime} form eath a sulgroup of the metrical group.
IV. Reftertion on a struight line.

If the straight line is the ax is of x, the transformation is

$$
s\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=-y .
\end{array}\right.
$$

This is of Type II, sth, the line of fixed peints theing $y=0$.
 comsists of the parallel limes theongh $1: 1: 1$.

If, bus, r^{\prime} is a tramsfomation of the metrical gromp (: $:$), it is mot difficult to shew that it is the perduct of tamsomations of the typere wate mamerated. There are in fart, two main hivisums of the metrical transformations, manets,

$$
\begin{aligned}
r^{\prime} & =k(r \operatorname{rn} \phi \quad, \quad!\sin \phi)+\cdots \\
y^{\prime} & =k(r \sin \phi+!(\cdots) \phi)+l
\end{aligned}
$$

and that. "onversely. any tramfomation of this tyl" wan be expmoed ar the product TMla.

$$
r:\left\{\begin{array}{l}
x^{\prime}=l(x(x) \phi-y \sin \phi)+n, \\
y^{\prime}=-k(x \sin \phi+y(x) \phi)+n,
\end{array}\right.
$$

which can also be written

$$
r_{2}\left\{\begin{array}{l}
r^{\prime}=k(r \operatorname{ros} \phi+!\sin \phi)+a, \\
y^{\prime}=k(r \sin \phi-!\cdot(0) \phi)+b
\end{array}\right.
$$

by repacing ϕ by－ϕ ．an allowable change since ϕ is any angle．
 the prombet Tr．MM

 Problat uf wo such tamsformations is ome of the form V_{1} ．

46．Angle and the circle points at infinity．By the metrical grouly amber ate left moblaged．This is evident from the fart that ans
 of any two lines and the minimmm line throggh their peint of inter－ section is egnal the the rose ratio of the transomed lines and the minimum lines thomolt the transformed perint of intersertion，since minimmon lines are thansformed into minimmon lines．This surgests a combertion hetween this（eross ratio and the angle between the two limes．W＇e shall fromed to find this commertion．

 namels．

$$
u_{1}^{2}+1_{2}^{2}=11 .
$$

Thi－wixeron λ the equation

$$
1 \lambda^{2}+\because 12 \lambda+1=11
$$

＂14．4．

$$
1=w_{1}^{*}+m_{2}^{*} \quad l=w_{1} י_{1}+r_{2} m_{2} \quad \quad 1=m_{1}^{2}+r_{2}^{2}
$$

$$
\lambda_{-}=1 ; i \frac{11}{1} i^{2}
$$

and call m_{1} the minimum line corresponting to λ_{1}, and m_{0} the minimum line correspmang to λ_{z}. Then (S 13)

Now the point equations of l_{1} and l_{2} are respertivedy

$$
\begin{aligned}
r_{1} x+r_{2} y+c_{3} t & =0, \\
u_{1} x+u_{2} y+u_{3} t & =0
\end{aligned}
$$

and if ϕ is the angle betwern them,

$$
\begin{aligned}
& \sin \phi= \pm \sqrt{A^{\prime}-R^{2}} \sqrt{A^{\prime}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lambda_{1} & =-\cos \phi \pm i \sin \phi \\
\lambda_{2} & =-\cos \phi \mp i \sin \phi \\
& =\ell^{*}=\cdots:
\end{aligned}
$$

whence

$$
\phi= \pm \frac{i}{2} \log \frac{\lambda_{1}}{\lambda_{2}}
$$

The ambignity of sign is natural, since an interehange of λ_{1} and λ_{2} would ,hange the sign of ϕ. We have therefore,

$$
\phi= \pm{\underset{2}{i} \log _{5}\left(l_{1} l_{2} \cdot m_{1} \prime_{2}\right) .}^{2}
$$

 theroush the ir $g^{\text {mint }}$ "t intersertion.

 introsertione.

(HADTER VH

PROJECTIVE MEASUREMENT

47. General principles. The results of the last soction sharest at
 by the gemeral arre of the seeomb elats.

$$
\Sigma A_{k k} n_{1} n_{k}=11, \quad\left(. I_{k}=A_{1 k}\right)
$$

 be any lwo limes, and let t_{1} and t_{z} ine the two tangente whis han be drawn tw the fundamental conice from the print of interseretion of l_{1} and l_{2}. Then the projective angle between I_{1} and I_{2} is detined by the equation

$$
L\left(l_{12}\right)=.11 \operatorname{lomer}_{2}\left(l_{12}, t_{1} t_{2}\right)
$$

where M is a constant in be determined more exaldy later.

This satisties the fombamental revinior mente for the measmement of an atorle. - fiace it attables to esery angle a definite

F1..:31
 of at whole is embal the the masme of the whole. To prose the latter statement, motire that

$11+114$

$$
\begin{array}{ll}
\left(l_{1}, t_{1} t_{2}\right) & \lambda_{1} \\
\left(l_{2} l_{2} \cdot t_{1} t_{2}\right) & \lambda_{2} \\
\left(l_{1} l_{2} . t_{1} t_{2}\right)\left(l_{2} l_{2} \cdot t_{1} t_{2}\right) & \lambda_{1} \\
\lambda_{3} & \left(l_{1}, . t_{1} t_{2}\right) .
\end{array}
$$

$$
\Delta\left(1 l_{1}\right)+A\left(11_{1}\right)=\Sigma(11)
$$

Dualistically, if the fundamental conic deres not rednee to two points its equation can be expressed in point coürdinates as

$$
\begin{equation*}
\sum \mu_{i k} \cdot r_{i} r_{k}=0 . \quad\left(\prime_{k i}=u_{k k}\right) \tag{3}
\end{equation*}
$$

Then, if P_{1}^{\prime} and I_{2}^{\prime} (Fig. sio) are two points, and T_{1} and T_{2} are the two prints in which the line $l_{1}^{\prime} f_{2}$ "uts the conice the prejective distamer $P_{1}^{\prime} P_{2}^{\prime}$ is defined hy the equation
dist. $\left(I_{1} P_{2}^{\prime}\right)=K \log \left(P_{1}^{2} P_{2}^{2}, T_{1} T_{\mathrm{z}}\right), ~(4)$ where K is to be determined later. It is shown, as in the case of amgles, that dist. $\left(I_{1}^{\prime} P_{2}^{\prime}\right)+$ dist. $\left(I_{2}^{2} P_{3}\right)=$ dist. $\left(I_{1}^{\prime} P_{3}^{\prime}\right)$.

The analytic expression for distance and angle in terms of the coniodinates of the points and lines, respeetively, maly

F14. 8.5 readily be fomed. Take, for example. equation (4). If y_{i} are the enoirdinates of t_{i}. and z_{i} the couirdinates of I_{2} the coïrdinates of T_{1} and T_{2} are $n_{1}-\lambda_{1} z_{1}$ and $y_{2}-\lambda_{2} z_{1}$, where λ_{1} and λ_{2} are the roots of the Ifuadratic equation
which we write for convenience in the form

$$
\begin{aligned}
& \omega_{y y}-\underline{2} \lambda \omega_{1 z}+\lambda^{2} \omega_{z z}=0 . \\
& \text { Wo will take } \\
& \lambda_{1}=\frac{\omega_{y z}+\sqrt{\omega_{y=2}^{2}-\omega_{y y}\left(\omega_{z z}\right.}}{\omega_{z z}}, \\
& \text { and } \\
& \lambda_{2}=\frac{\omega_{\mu}-\backslash \overline{\omega_{m}^{2}}}{\omega} .
\end{aligned}
$$

Then, We the definition (2) ame theorem III, 冬 1 : we haw

$$
\operatorname{dint}\left(1, z_{1}\right)=K \log \frac{\lambda_{1}}{\lambda_{2}} \text {. }
$$

But
and therefore we hase as the final form,

There is of remerse fere thener as th whith of the two values of λ is taken as λ_{1} ．Fo interehather λ_{1} ant λ_{2} is smply whate the pontive directiont on the line

The distance betwern two perints is zero when the two prints are wintedent when the lime ermatering them is tangent the the

 （t）the minimma lint in ordinaty measmement．
＇The distane between two fermts is intinite when λ_{2} or λ_{2} is zero or intinity．＇This haprens only when I_{1}^{\prime} or $I_{2} \mathrm{i}$ on the fumlat
 ingtimite distanter firom all uther points．

 ＂－$-\lambda_{2} "_{1}$－where λ_{1} and λ_{2} ate the roots of the＂enation
which may he writton

$$
\Omega-\because \lambda \Omega+\lambda^{2} \Omega=0
$$

If w lakt $\quad \lambda_{1}=\Omega+\frac{\Omega}{\Omega} \quad . \Omega \Omega$,

$$
\lambda_{2}=\Omega \quad \Omega \Omega=\Omega \Omega
$$

we have h（こ）

48. The hyperbolic case. We assume that the fundamemtal comic is real. It may then be brought by proper choiece of coierdinate axes to the form

$$
\begin{equation*}
\omega_{x,}=r_{1}^{2}+r_{2}^{2}-r_{3}^{2}=0 \tag{1}
\end{equation*}
$$

in point coïrdinates and to the form

$$
\begin{equation*}
\Omega_{u u n}=u_{1}^{2}+u_{2}^{2}-u_{s}^{u}=0 \tag{2}
\end{equation*}
$$

in line coiirdinates.
'Tlue conice divides the phane into two portions, one of which we call the inside of the comie and which is dharacterized be the fact that the tangents th the curve from any point of the region are imakinary. The mutside of the comice is the region wharaterized by the fact that from every point of it two ral tangents cam be drawn. Wie shall comsider the inside of the conice.

If l_{1} and l_{2} (Fig. 3日) arr 1 wo real lines intersecting in a point inside the conic, λ_{1} and λ_{2} of equation (7), 冬47, are comjugate imaginary. Let us place
 $\lambda_{1}=r^{i d}$. where

$$
\cos \phi=\frac{\Omega_{r, n}}{\sqrt{\Omega_{r,} \Omega_{w, n}}}, \quad \sin \phi=\frac{\sqrt{\Omega_{v,} \Omega_{r, w}-\Omega_{r, m}^{2}}}{\sqrt{/ \Omega_{r,}, \Omega_{w, m}}} .
$$

Then $\lambda_{2}=r e^{-i \phi}$ and

$$
\measuredangle\left(l_{12} l_{2}\right)=M \log _{1} r^{2} \text { in }=M(\because \phi+\because \| \pi) i .
$$

Sinee it is desirathe that the angles which a line makes with another shomald differ hy multiphes of π. We shatl phace, IV - $\quad-\quad$, and have as the complete defintion of the angle θ between the limes l_{1} and l_{2},

$$
\theta=\phi+n \pi ;
$$

whene

$$
\cos \theta=\perp \stackrel{\Omega_{n, \ldots}}{\sqrt{ } \Omega_{n, n} \Omega_{n, n} .}
$$

 For that it is meresarary and sufficient that $\frac{\lambda_{1}}{\lambda_{2}}-1$. The two lines
are then harmonie eonjusate with rexpert tot and t_{2}. This has a

 fiomt that L_{1} amd L_{2} should be harmonio conjusathe to T_{1} and T_{2}.
 mast lie on the pular of l_{1}. limt the polate of l_{1} amt $L_{\text {a }}$ pass

 the where

 distam"e.

and the distane Pef heromes mastany. If, then, we can imagine a being living insibe the comice and measuring distance and angle hy
 diatance, and the rexinn ontidn wonld be simply nonexistent, a mote amalyte comeption in which a peint means simply a pair of whindmate values. Surh a being would have a mon-Eiuchden grementorn of the type named Lobarderskian.
 of the Enelidean axioms, and the inside of our fumbanemal romie is simply a fention of the Eurlitean phane. It lies omtside the sorpe of this how w whe that by a choice of axioms, differing from thene of Euelind cmly in the parathel axim, it is pessible to arrive at a gemerty which for the entire plane has pererties which are exatly these of the interion of our fundamemtal comie, with the projective measurement here defimed. Such a diselnssion may be fomm in tratises on mon-Enelihan gememery. The inside of the fumblamental anie is a pieture in the Emetidean phane of the mon-
 striking propertios.

We tirst motien that if LK (Fig. :37) is a atraght lime ame r
 intersert l Ki and thase which do not. The hater lines are then whirh in the entire plame interond l.K in printwhtride the comic. but from the standfuint of the intering of the conio they mant lo (mbinkent as but intereme
 intomentine and the manteremthe.
 ate wamand from cand wher her twa

 strui, lite li,...

The point h^{-}is the point ($1: 1: 1$), amp the equation of ris is
 and IPR we have to place in (:

$$
\begin{gathered}
r_{1}=0, \quad r_{2}=u_{3}, \quad r_{3}=-u_{3} \\
u_{1}=\mu_{2}-u_{3}, \quad u_{2}-u_{1} \quad \mu_{3}=y_{1} .
\end{gathered}
$$

Them results, with the aid of (i),

$$
\operatorname{ros} \theta=\frac{y_{1}}{\sqrt{y_{3}^{2}}-y_{2}^{2}}=\tanh l_{1}^{\prime} .
$$

It apears, them, that the angle θ is a function of p. Wre shatl flate, following Lobathewsy's motation,

$$
\theta=\pi\left(y^{\prime}\right)
$$

Our last equation then leads with hithe work th the final reant:

$$
\tan !_{2}^{1} \pi\left(l^{\prime}\right)=r^{r}
$$

This result is indepembent of the fact that it has beren whamed for the seectal line $r_{1}-11$ and the spex ial form of the replation of
 anders on distameres.

 comstant, we hatre

$$
\left.(a)^{2}+\cdot(0) \cdot 1\right) \quad(-)
$$

the fundamental romic $\omega_{r,}=0$ at the peints in which the latter is cut be the polar $\omega_{n, r}=0$ of the point $\%$. There are three cases:
I. The peint (' lies inside the romic (Fig. 38). The peento rircles with the center y_{i} are then closed curves intersecting the conic in imaginary peints.
II. The peint (lies on the eonic (Fig. 39), and the distamer of each $p^{\text {wint }}$ from y_{i} is infinite. The peoulde eireles are tangent to the

conic. Thery are the limiting cases of the peredo circles of case I when the eenter recedes to infinity and the radins becones intinite, and are called in nom-Euclideangemetry limit cirches or horicyeles.
III. The point C is ontside the comic (Fig. 40), and the ralius is imaginary so that points of ((x) lid inside the conie. The straight lime $\omega_{y, r}=11$ is one of these pacoulo cirches, and the others are the loci of perints equidistant from this line. To prove the latter statement draw any straight line thromeln ${ }^{\prime}$: It intersesets the pelar of e° at $l i$ and the peendon dirlld in two prints our of which is !. Then (' R and $\%$ are (onstamt, anl hence Res is (onstant. In this germentry. thern, the lowes of pints apmatly distamt from a straight line is whe a staight line. hot a peredo direle with imaginary center and maginary ramins. It is called a hyperegle.

EXERCISES

1. Consider angle amd distame for pemts ontside the fmatamental ronke, reperially with refereme to peal and hatiginary valhes.

 atrs lime and a lime of zevolrught
2. Prore that the sma of the anghe of a triangle is lese than t wo right amsles.
3. The elliptic case. Wir astame lhat the fimblamental (ennir is maginaty. It may be redmed by proper eho of reädinates to 1he form

$$
\begin{equation*}
\omega=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=0 \tag{1}
\end{equation*}
$$

in frimt eromediates and the form

$$
\Omega_{u_{u}}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=0
$$

in linte moirndinaters.
sime the taments from any ferint to the fombamental combe are imagimary the problem of detemmintion of angle is the satme here as in the hypertoblice cast, athl we hate

$$
\cos \theta=-\frac{\Omega_{w w}}{\sqrt{ } \Omega_{1}} .
$$

Plame $\lambda_{1}=\cos ^{2}$, whom

$$
\left.\operatorname{rns} \phi=\begin{array}{c}
\omega_{n} \\
\backslash(1)
\end{array} \quad \sin \phi \quad \backslash(\omega),(1)-\omega\right)^{*},
$$

$$
\begin{equation*}
\cdots \frac{1}{\%}=(1) \tag{1}
\end{equation*}
$$

 of the paint is on the lambantatal wane.

 No that cos ${ }^{\prime} /=1$ and $l=0$. As z_{i} moves away from y_{i} the signs of the quamtitics on the righthand side of equation (t) remain pesitive and l increases matil z_{1} reathes a point on the line $\omega_{y / f}=0$, (Fig. +1), the pular of y. Then (as ${ }_{k}^{d}=11$ aml $d=\frac{\pi}{\because} / 2 \cdot$ This is true of all lines throngh y_{i} and for either diredtion on any surh line. Hence the straight linc $\omega_{1, t}=0$, which, by $\leqslant 4$, is perpendienlar to all lines threngh y_{1}, is at a constant distance $\stackrel{\pi / 2}{\ddot{2}}$ from !l in all

F1.. 41 directions.

Comsequently, if we start from y_{i} and taverer a distance πk in any line through y_{i} and in either tirection, we retum to y_{i}. There are two cases of importance to be distinguished:
('ase 1. All straight lines may be comsidered of length πk. The coïrdinathes always refer, then, to a single perint. All straight lines interseet in one and only one peint, there are no parallel lines and two lines atways bumbla portion of the plane. This is the Ritomennern !formetry. It may be vismalizent be drawing straight lines from a peint watside the phame ame refisidering eath perint of the plane as eppesented ley whe and only one of these lines.
('ase II. All staight limes may be ansilemed of length $2 \pi / k$. Whell we traverse the distance πk on a line from y_{i} and return to \%. We shall comsider that we are on the "Iposite side of the phane and med to repat the jemmey to return to our starting point.

 f"ints, there are ne parallel lines. and two lines inclose two per-
 that on the surfane of a there. It is alse the geometry of the halflims on rays dratw th the phane from a print ontside of it.

EXERCISES

2. Prose that the sum of the anden of at thanale in whater than two right amples.
50. The parabolic case. We matr combinter that the fumbamentat

 the two prints $1: \pm i: 9$, and the line equation of the fundanmental ranic is then

$$
\begin{equation*}
\Omega_{u_{1}}=u_{1}^{2}+u_{2}^{2}=0 . \tag{1}
\end{equation*}
$$

'The fomulat for ambe may be montion ats ins f. with the reanlt that

$$
(\cdots) \theta=-\begin{gather*}
r_{1} n_{1}+r_{2}^{\prime \prime} \\
\sqrt{n}+n_{2}^{2} \backslash_{1}^{2}+w_{2}^{2}
\end{gather*} .
$$

 we will write

$$
\Omega==n_{2}^{2}+u_{3}^{2}+\epsilon \|_{3}^{2} \quad 0,
$$

 ray"unting (1. (:) is

$$
\text { (1) = }=\left(r_{1}^{2}+r_{2}^{+}\right)+11
$$

ant from thin wr timl, as in

If we take $r_{3}=0$ as the line at intinity, the points $1: \pm i: 0$ beemer the eircle perints, and the fommala (\because) for angle and (i) for distane bewme the usial ('antesian fomblas. The geometry is Eindidem. We have this result:

 as $1: \pm 1: 0$. The lime equation of the fundamental cemice is then

$$
\begin{equation*}
\Omega_{u u}=u_{1}^{2}-u_{2}^{2}=0 . \tag{ii}
\end{equation*}
$$

Sine through every ral point there wo lines of the pemeins
 real if real lines are to make real angles with eath other. We
 in! to for finding d.

$$
\cdots \cosh _{1} \theta=\begin{gather*}
r_{1} \mu_{1}-r_{2} m_{2} \tag{7}\\
\sqrt{n_{1}^{2}-r_{2}^{2}} \sqrt{m_{1}^{2}-w_{2}^{2}}
\end{gather*}
$$

The formula for distmen may formon as in Case I, with the result

If we take $r_{3}=11$ as the line at infinty and hise mombongeneons
 (\because, y) alld $\left(. I^{\prime}, y^{\prime}\right) \quad, \quad d=1^{\prime}\left(x-x^{\prime}\right)^{2}-\left(y-y^{\prime}\right)^{2}$,
and for the angle betwern the two lines $a x+b y+c=0$ and $a^{\prime} x+a^{\prime} y+a^{\prime}=11$,

Comsider now any tixal peint in ther phane. Fon convenience lat

 pmints at intinity. The mpations of thes lines ate ir $1 /$ - 11

shated region and real in the manded region. The bommariow Between the two regions are lines of length zero. The loche of p"ints ("quidistant from " are equilateral hyperbolas. $x^{2}-y^{*}=k$.

1 line $a x+b y=0, \quad$ pasing through ". is in the mishathed

 all :mghe with its vertex at 11 is real if henh sides are in the shanded manger or both sides in the mor Whated region, and is imaginary if one side is in the shated rewion and me side in the manhanded regim. A line thromgh "whirh is sut a lime of zero lengeth makes an intinite angle with each of the limes of zeroo length. The two lines of zero lengeth make an indeterminate angle with each other. ha this respect as in other ways they are analogens the minimmon limes in a Enclide:mp pane.

These properties are of romese the same at all peints of the phathe. They make a gemmetry which differs widely frem the

[^4]
CHADTER VIII

CONTACT TRANSFORMATIONS IN THE PLANE

51. Point-point transformations. ('msider now the transomation detined by the equations

$$
\begin{align*}
& \rho r_{1}^{\prime}=t_{1}^{\prime}\left(r_{1}, r_{3}, r_{3}\right), \\
& \rho s_{2}^{\prime}=t_{1}^{\prime}\left(r_{1}, r_{3}, r_{3}\right), \tag{1}\\
& \rho x_{3}^{\prime}=f_{j}^{\prime}\left(r_{1}, r_{3}, r_{3}\right),
\end{align*}
$$

where x_{1}, r_{3}, r_{3} and $x_{1}^{\prime}, x_{1}^{\prime}, r_{3}^{\prime}$ are p mint whirdinates and $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}$ are homegrentoms fumetions which are comtinnoms and pessers derivatives and for which the dambian
does mot identically ramish.
By the transfomation (1) a point x_{i} is transfomed inte ome of mon prints r. with fessible expentional puint. Owing th the laputheis as th the Janham, equations (1) (an in gerneal be

$$
\begin{equation*}
r_{1} \quad \phi_{1}(t) \quad r_{2}=\phi_{2}(t) \quad r-\phi_{1}(t) . \tag{2}
\end{equation*}
$$

 $1 \because 0$
 determand by the former six, and hemee the direetion of at a point I^{\prime} is determined by the direetion of at at. From this follows the theorem

For this reason the tramsformation (1) in ralled a romtat trotnstarmution.

If the transformation (1) is expressed in nomhomogentons (abtesian corimelinates, it hetombs

$$
\begin{aligned}
& x^{\prime}=t_{1}^{\prime}(x, y), \\
& y^{\prime}=t_{y}^{\prime}(r, y)
\end{aligned}
$$

Now let p be the direetion $\frac{d y}{d x}$ of a conve traversed by the point (\because, , $/$) and let f^{\prime} be the direction $\frac{d y^{\prime}}{d y^{\prime}}$ of the tramsformed curve IV t have, evidently,

$$
y^{\prime}=\frac{\frac{c}{c}+f_{2}^{\prime}}{\frac{c}{c} t_{2}}
$$

The three erfations

$$
\begin{align*}
& x^{\prime}=t_{1}^{\prime}(x, y), \\
& y^{\prime}=f_{4}^{\prime}\left(x^{\prime}, y\right), \tag{array}\\
& t_{2}^{\prime}+t^{\prime} t_{!}^{\prime} \\
& r^{\prime}=\frac{I^{\prime}}{t_{1}^{\prime}+t^{\prime} \cdot t_{!}^{\prime}}
\end{align*}
$$

52. Quadric inversion. In wample of at f"int-puint trantimma-
 ther anltinc:ationc.

As another example eonsider the transformation

$$
\begin{align*}
& \rho x_{1}^{\prime}=r_{1} r_{3}, \\
& \rho r_{2}^{\prime}=r_{2} r_{3}, \tag{1}\\
& \rho x_{3}^{\prime}=x_{1} r_{2} .
\end{align*}
$$

These equations can be solved when neither x_{1}, x_{2}, nor x_{3} are zero into the equivalent equations

$$
\begin{align*}
& \sigma, x_{1}=x_{1}^{\prime} x_{3}^{\prime}, \\
& \sigma x_{2}=x_{2}^{\prime} x_{3}^{\prime}, \tag{2}\\
& \sigma x_{3}=x_{1}^{\prime} x_{2}^{\prime} .
\end{align*}
$$

The transformation establishes, therefore, a one-to-one relation between the points x_{i} and the points x_{i}^{\prime} with the possible exception of points on the triangle of reference ABC. To examine thesp points let A be as usual the point $0: 0: 1$, β the point $0: 1: 0$, and ($'$ the point $1: 0: 0$, so that the equation of $A B$ is $x_{1}=0$, that of $A C^{\prime}$ is $x_{2}=0$, and that of $B C^{\prime}$ is $x_{3}=0$. Then from (1) any point on the line $A B$ is transformed into A, any peint on the line $A(C$ is transformed into $(9$ and any point on the line $B C$ is transformed into A. The coürdinates of either A, f, or $(:$ if substituted in (1), give the indeterminate expression $0: 0: 0$, but if we enlarge the detinition of the transformation by assiming that (-2) hohls for all points. including those on $A B$, A^{\prime}, and $B C^{\prime}$, it follows that B is transformed into the cntire line $A B$, (' is transformed into the entire line $A C$, and A is transformed into the entire line $B C$.

Consider any straight line with the equation

$$
u_{1} x_{1}+u_{2} r_{2}+u_{3} x_{3}=0 .
$$

It is transformed into the colve

$$
a_{1} x_{1}^{\prime} x_{3}^{\prime}+a_{2} x_{2}^{\prime} x_{3}^{\prime}+a_{3} x_{1}^{\prime} x_{2}^{\prime}=0,
$$

which is a monic through the points A, B, and C. In fact. the point in whith the line merts $A B$ is transformed into P, the peint in which the line meets. At' is transformed into C, and the permt in which the line mests $B{ }^{\prime} \times$ is transformed into A.
 the conic into which it is transformed splits up inte two straight lines. one of which is a side of the coürlinate triangle and the other of which panses through the vertex opposite that side. In
partioular, consider a line $x_{1}+\lambda x_{2}=0$ through A. The tirst two of equations (1) give $x_{1}^{\prime}+\lambda x_{2}^{\prime}=0$ for all points except the point 1 : that is, any point exepptan a line throngh A gives a definite pesint on the same line. 'The point .1 , howerer, groes wer into the cutire line $r_{3}=0$.

In a similar mamer a comic i stranformed into a curve of fourth ordor, which passes twiee through wath of the points. $1, I, 1$.
 If, howerer, the monir passes throngh one of the perints A, B, r, that point is transfomed into a sible of the coirslinate triangle, amb the rurve of formot order must consist of that side and a Auve of third arder.

In partionhar, a conia throngh A but mot through F or A^{\prime} is

 and \quad, but mot through A. Finally, a monderpenerate conio throngh the three points A, B, A^{\prime} is transformed into the three sides of the triangle of referenee and a straght line not themerh its ver tires. These results may all he seen direetly or verified analytially.
by plating $r_{i}^{\prime}=x_{i}$ in aquations (1) the bocos of fixed points of the tansfomation is fomme to be the eonic

$$
r_{1} r_{2}-r_{3}^{2}=0
$$

which passes thromerl P and $/$ and is tangent to $A C$ and A^{\prime} :
It is not dificult 10 show that rach point I of the plane is transformed into a perme l^{\prime} in which the line AI' 'olts the polar of I^{\prime} with respert to the fixed embie.
 it from the circular inverson, or simply inversinn, disensed in the next sattion.

EXERCISES

1. Prowe the statment in the text that the print I is tam-mment into the peint in wheh Al ants the polar of l with respert th the

 into which p is tatnsomed.
2. Study the transformations

$$
\begin{aligned}
\text { (1) } \rho \cdot r_{1}^{\prime} & =\frac{1}{r_{1}}, \\
\rho \cdot r_{2}^{\prime} & =\frac{1}{r_{3}}, \\
\rho \cdot r_{3}^{\prime} & =\frac{1}{r_{3}} \\
\text { (2) } \rho \cdot r_{1}^{\prime} & =r_{1} r_{3}^{\prime}, \\
\rho \cdot r_{2}^{\prime} & =r_{3} r_{3}^{\prime} \\
\rho \cdot r_{3}^{\prime} & =r_{1}^{2} \\
\text { (3) } \rho \cdot r_{1}^{\prime} & =r_{1}^{2} \\
\rho \cdot r_{2}^{\prime} & =r_{1} r_{2}, \\
\rho \cdot r_{3}^{\prime} & =r_{3}^{2}-r_{1} \cdot r_{3} .
\end{aligned}
$$

53. Inversion. The transformation (1) of 5 s. has particular interest and importance when the points f; and 6 are the cirele perints at infinity. We may then phate $r_{3}=t, r_{1}=r+i, y_{2} r_{2}=x-i$ in and, using ('artesian coüdinates, write the thansfomation in the form

$$
\begin{align*}
\rho\left(\cdot r^{\prime}+i y^{\prime}\right) & =(r+i y) t ; \\
\rho\left(. r^{\prime}-i y^{\prime}\right) & =(r-i y) t, \tag{1}\\
\rho t^{\prime} & =r^{2}+y^{\prime}
\end{align*}
$$

or. what is the same thing in monhmongeons fom,

$$
\begin{array}{r}
r^{\prime}=\begin{array}{c}
r \\
r^{2}+y^{\prime} \\
y^{\prime}= \\
y^{2}+y^{\prime}
\end{array} \\
r^{\prime 2}+y^{\prime 2}=\begin{array}{c}
1 \\
r^{2}+y^{\prime}
\end{array} \tag{2}
\end{array}
$$

By this transformation a (mone-tome relation is extablisherl betwern the pointe (x, y) and $\left(r^{\prime}, y^{\prime}\right)$, with the expeptions that the
 tarth of the efrele pims at intinity weresponts the the minimm
 is fixed. Any peint of the fixed circle is transformed into a peint
inside that rirehe, and, rombersely, in surh a wity that if 10 is the
 The thasformation is called an incerxen with repert tor the mat

 tixed arele the afole ef ineresion.

Lemembering that a eirele is a eromit thromgh the rime promes. amt applying the results of the previons seretion, we hase the following theorems:

 int", its.r!! (1 Inl the line at intinit!l).

 limes themefle the rentire uf incervions).

 lines thi"u!th the anter "t innersion ant the lime at intinit,").

 intimit! $)$.

If we take the nomhomomeneons form (\because) of the transfomation and aply it to the expations

$$
\begin{gathered}
4 x+l y+r=0 \\
u\left(r^{2}+y^{2}\right)+b r+r y+i=0
\end{gathered}
$$

 It is in this simplitiod form that the theorems are oftorn wion. hat thes then fail to tell 1 loe whole sters.

the tan- inm of I b. M, is an insersion with respect to the circle $x^{2}+y^{2}=k^{2}$ and is repmented by the equations.

$$
\begin{array}{r}
y^{\prime}=\begin{array}{c}
k^{2} r^{\prime} \\
r^{2}+y^{2}
\end{array} \\
y^{\prime}=\frac{k^{2} y^{2}}{r^{2}+y^{2}}, \tag{3}\\
r^{\prime 2}+y^{\prime 2}=\frac{k^{4}}{r^{2}+y^{2}} .
\end{array}
$$

It is wident that a $f^{m i n t} P^{\prime}$ is transformed into a point P^{\prime}, where (1). $10^{\prime \prime}=h^{2}$. and that themems $\mathrm{I}-\mathrm{V} \mid$ still hold.

If we denire an inversion with respect to a dircle with center ($1, h$) and ratins k : we may transfom (3) by means of a transfomation which carries 1) int" (". $)$). The result is

$$
\begin{array}{r}
r^{\prime}-\prime=\frac{h^{2}(r-l)}{\left.(r-n)^{\prime}+(!)-h\right)^{2}}, \\
y^{\prime}-h=\frac{h^{2}(!-l)}{(r-n)^{2}+(!-h)^{2}}, \\
\left(r^{\prime}-a\right)^{2}+(y-h)^{2}=\frac{h^{4}}{(r-a)^{2}+(y-h)^{2}} .
\end{array}
$$

Ohvinuly themem: I VI hold for ($\overline{\text { a }}$).
If the inversion (\because) is written as an enlargel peint-point transfurmation of the form (: $:$) 冬各1, we have

$$
\begin{aligned}
& x^{\prime}=\frac{x}{r^{2}+y^{2}} . \\
& y^{\prime}=\frac{y}{y^{2}+y^{2}} . \\
& r^{\prime}=\frac{\because r y+\left(y^{2}-r^{2}\right) p}{r^{2}-2 y^{2}+2 p,} .
\end{aligned}
$$

$$
\begin{aligned}
& P_{1} f_{1}^{\prime} \mu_{2} \\
& \text { 1- } \mu_{1}^{\prime} \mu^{\prime} 1+\mu_{2}
\end{aligned}
$$

EXERCISES

1. Shew that any arele through a peme P^{\prime} and its inserse peint P^{\prime} is ortherental to the "ireh of inveraion.

 rentrix aireles and the straight lints thenurh their eommon renter.
2. Show that parallet henes invert into dirles wheln are tamgent at the remter of inversjon.
 of inversion is "fatal to that of the tramsformed peints.
 jusates with respect to the intersections of the lime $l^{\prime} \boldsymbol{p}^{\prime}$ and the "inela of invervion.
3. If a rirelf. is inverted into a st maght hane, show that two joints which are inverse with respect to the circle ge into two peints which are symmetrimat with respert to the lime.
4. Stuly tha real proprotios of an inversion with respect to the imaginary vircle $r^{2}+y^{2}=-1$.
5. Show that an inversion is completely determined ley two pairs of inverse puints.
6. From the thenem "fome dreles ean he drawn tangent the thee

 prowe by inversion the theorem "through at given point four areles ean

7. Point-curve transformations. Comsider now a transformation defined by the equation

$$
\begin{equation*}
r^{\prime}\left(x_{1}, r_{2}, r_{1}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)=0, \tag{1}
\end{equation*}
$$

 and pussessing derisatives with respered to hoth.
 are subtimbed lore r, in (1) and held lived. the resultins equation

$$
r_{1}\left(y_{1}, H_{2}, y_{3}, x_{1}^{\prime}, r_{2}^{\prime}, x_{3}^{\prime}\right) \quad(\because)
$$

We shall make the hepothesis that these m^{\prime}－eurves form a two－ parameter fanily of curves such that one rame of this family groes thromen any wivn frint in any wiven direction．
 （1゙ー・ばいい（ \because ）if

$$
\begin{equation*}
f\left(y_{1}, y_{2}, y_{3}, z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)=0 . \tag{3}
\end{equation*}
$$

ant all valum of the ration $\|_{1}: \ell_{2}:!_{3}$ whith can be determined

 ＂ber，are wirn ha aty print $1 /$ which la心 wh the rarb

$$
\begin{equation*}
r^{\prime}\left(r_{1}, r_{2}^{\prime}, r_{3}, z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)=0 . \tag{t}
\end{equation*}
$$

（ all any ruma defimed by equation （t）a k－corve．Wre have，them，the
 fallowing result：

Fig． 43

 comstant in the same eqpation．

It is further avilant that all h－rarres which pass throngh a point II

If any prof of this is mecessary it may be supplied by motiong that rymation（3）is the remblition that $I=$ shomld lice on k and that $\pi^{\prime \prime}$＊hmat lic on $\operatorname{mon}^{\prime}$ ．

 －ynations

$$
\begin{array}{ll}
r_{1} & \phi_{1}(\lambda) \\
r_{2} & \phi_{2}(\lambda), \tag{i}\\
r_{0} & \phi_{1}(\lambda)
\end{array}
$$

 $H_{2} b_{6} \cdot i n g r_{1}+\Delta r_{1} r_{2}+\Delta r_{2} r_{3}+\Delta r_{3}$. The two print- I_{1} and H_{2}
 conimbates of whith are erisen hy the equations

$$
\begin{gather*}
r^{\prime}\left(r_{1}, r_{2}, r_{3}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)=0 \\
\left(\frac{r}{r r_{1}}+\epsilon_{1}\right) \Delta r_{1}+\left(\frac{c r^{\prime}}{r_{2}}+\epsilon_{2}\right) \Delta r_{2}+\binom{r}{r, r} \Delta r_{i}=1, \tag{ii}
\end{gather*}
$$

where the values of r_{i} and la_{i} are to be taken fiom (i). The

 of whith are given by

$$
\begin{align*}
& r\left(r_{1}, r_{2}^{\prime}, r_{2}, r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}\right)=0, \\
& r_{-}^{\prime}, r_{1}+r_{2}, r_{2}+r_{2}^{\prime}, r_{2}=0, \tag{1}
\end{align*}
$$

 responds to e.
 For, hy difformbatimer the tion of there erpations and takiner adonent of the somblat. Wr hatro

$$
\begin{equation*}
r_{1}^{\prime} d r_{1}^{\prime}+\frac{r}{r} r_{2}^{\prime} r_{2}^{\prime}+\frac{r}{r r^{\prime}}+r^{\prime}-11 \tag{}
\end{equation*}
$$

$$
\because\left(\pi,!+I^{\prime}\right)-\cdots .
$$

and tet p be the slone $\frac{d y}{d y}$ of amy curve a and f^{\prime} the slope $\frac{d y}{d y^{\prime}}$ of the tamsformed rurer r. Then equations (ij) and ($*$) are rephaced in the presemt courdinates lis

$$
\begin{aligned}
& r \\
& r+r^{r} \\
& r y \\
& r \\
& r \\
& r \\
& r r^{\prime}+r^{\prime} \\
& r y^{\prime}
\end{aligned}=0,
$$

which 'mable us to determine f^{\prime} and f^{\prime} when r. $!, x^{\prime}$, and y^{\prime} are knewn. The last three equations, written tugether,

$$
\begin{align*}
& F^{\prime}\left(r . y, r^{\prime}, y^{\prime}\right)=0, \\
& r F^{\prime} \tag{?}\\
& r \cdot r p^{\prime} \frac{r}{r} \\
&=y=0, \\
& \frac{r F}{r \cdot r^{\prime}}+y^{\prime} \frac{c F}{r y^{\prime}}=0,
\end{align*}
$$

are called an enlarged point-curve contact transformation. If sonsed for r^{\prime}, y^{\prime}, and p^{\prime} they maty be written in the form

$$
\begin{align*}
& r^{\prime}=f_{1}^{\prime}\left(x, y, p^{\prime}\right) \\
& y^{\prime}=f_{8}^{\prime}(r, y, p) \tag{10}\\
& y^{\prime}=f_{3}^{\prime}\left(x, y, p^{\prime}\right) .
\end{align*}
$$

If. then, the print (r, y) deserthes the emere $r=f_{1}^{\prime}(\lambda), y=f_{z}^{\prime}(\lambda)$, We have $f^{\prime}-f_{-1}^{\prime \prime}(\lambda)$, and equations (10) give the transtomed arve expromen in terms of the paraneter λ.

An cample of a peint-reme trans fomation is fomm in the ens-
 writuon in the fom

$$
\begin{aligned}
\left("_{11} r_{1}+"_{12} r_{2}+"_{13} r_{3}\right) \cdot r_{1}^{\prime} & +\left("_{31} r_{1}+"_{32} r_{3}+"_{2} r_{3}\right) \cdot r_{2}^{\prime} \\
& +\left("_{31} r_{1}+w_{3} r_{2}+"_{13} r_{3}\right) \cdot r^{\prime}=0 .
\end{aligned}
$$

 it is radily fut intu the form (10).

EXERCISES

1. Express the general correlation in the form of enpations (10).
2. Plate in the form of epations (10) the pelarity hy wheh a print is transommed into its polar lime with resuen to the eirele $r^{2}+y^{2}=1$.
 the pelarity of Ex. \because.
3. Shew that the rarve intu whinh the rirne $(r-h)^{2}+(!-k)^{2}=r^{2}$ is tamstommed ber the party ef Ex. 2 is a comic, amb state the con-
 the focus and diederix of the ernia.
4. Prowe that hy any polatity the order and the dass of the tansfomed rarre is equal to the elans ame the ofter, mandively, of the origimal earve.
5. Study the tramsformation

$$
\begin{aligned}
& r^{\prime}=\frac{!}{\prime \prime}-r \\
& \prime^{\prime}=\stackrel{\prime}{\prime \prime} \\
& \prime^{\prime} \\
& r^{\prime}=\frac{!}{!}
\end{aligned}
$$

and find the curve into which the aire $x^{2}+y^{2}=1$ is transomed by it.
7. Expmess in the form of equations (10) eath of the types of comelations given in sfe and study them from this stampoint.
55. The pedal transformation. As another example of a point"me transfomation we shall use homogeneons Cartesian coiomb mates ame take the equation

$$
\begin{equation*}
\left(x^{\prime 2}+y^{\prime 2}\right) t-x^{\prime} t^{\prime} x-y^{\prime} t^{\prime}!y=0 \tag{1}
\end{equation*}
$$

 is the wfiging the virele bexomes the two minimum lime thengh

明 intw the line at intinity and the minimum lint (1)

The remure comperpmeting to a point κ^{\prime} is in general a straight
 $f^{\prime \prime}$ is the wigin on one of the vircle prints at intinity, in which "ase the ternme is imbleminate. If $k^{\prime \prime}$ is any point on the line at intinity hom ant arele peint, the ferurve is the line at intinity. If $\kappa^{\prime \prime}$ is in a minimum line though 1 , but not at infinity, the h-vinw is the wher minimum lime throngh o. A k-line does not

Commenty, inly staight line which does mot pass throngh the wigin, and is wether the line at intinity ner a minimum line, is a K-linc. the print κ^{-1} leving the peint in which the nomal from $)$ mets the line. This may be seon by comparing the equation
 Which is the fent of the momal from (1 the tine.

Take any dure a The tangent permere at any perint A is the tamernt line t, innt the penint T^{\prime} is the lowt of the: perpern-

 the .ritain tw the trumont limes oft' a 'The transfomation is called the forlat transtionturtion, and the peint 1 is the origin of the thallus fomation.

If the fulal thansomation is expersed in Cartesian coiordimatis an :an whatge pint-rurve transomation of the form (9), Sit. it bumoms

$$
\begin{gather*}
\prime^{\prime 2}+y^{\prime 2}-r^{\prime} x-y^{\prime} y=0 \\
r^{\prime}=-y^{\prime} \tag{2}\\
!^{\prime} \\
y^{\prime}=-\ddot{\prime}-r^{\prime}- \\
\because y^{\prime}-!
\end{gather*}
$$

and thene matime am be shlved for x^{\prime}. y^{\prime} and f^{\prime}, giving

$$
\begin{align*}
& r^{\prime}=-\frac{\left(!-\mu^{\prime}\right) p^{\prime}}{1+\mu^{\prime}}, \\
& \begin{array}{l}
y^{\prime}-y^{\prime \prime}-\mu^{\prime} \\
1+m^{\prime}
\end{array} .
\end{align*}
$$

EXERCISES

 $t=4 t$.
 the origin of the tansfomation is tamstomend anto the tangent lane at the vernex of the paralula.

 is a pedal transomatime whith origin at the mater of the allipne.
56. The line element. With the usw of ('autesian maindmaters the contart transtomations may be looked at lom a mew viewpint步 the aide of the concept of the lime rement. A lime element maty lee detined as a peint with an assomeded direction. More pereisely Het there be given there mambers (. $\%$, 1), where the mombers
 of a print in the plame amel f is to be interpered as the slope

 line throngh $I f$ in the dinection f, but this line manst be ant

 single parametor: that.

$$
\begin{equation*}
\therefore \quad t_{1}^{\prime}(\lambda) \quad, \quad f^{\prime}(\lambda) \quad \mid \prime \quad I^{\prime}(\lambda) \tag{1}
\end{equation*}
$$

 of whith are the firs two of (1). Then the thim equation of (1)

 faint of the curve shabld the that of the tangem to the comese. The nemanary and suthicient comlition fon this is that hy virtue of (1)

 Whatl the ralled at mion of time chements when it satisties the con-
 always satisties this comdition and that the seromilype satisties the rombition when the direction of eath element is that of the enrwe of which the print of the element lies.

Two minns of lime chements have rementw whath other if they have a line demem in common. Two mions of the first tye have whtat, therefore when they wine inte: onw of the first type has womtart whith one of the second when the peint of the firs hers ont the
 montare when their curves are tangent in the ordinary semse.

Any transomation of lime elements defined hy the equations

$$
\begin{align*}
& r^{\prime}=f_{1}^{\prime}\left(x, y, r^{\prime}\right) \\
& y^{\prime}=t_{y}^{\prime}\left(x, y, \gamma^{\prime}\right) \\
& r^{\prime}=t^{\prime}\left(x, y, l^{\prime}\right) .
\end{align*}
$$

Where the funcims are lonnd ly the condition

 in chatare

 Then equation (3) sives the emmlition
which mast be trme for all values of the ratios de: d!!. Hence we hatw

$$
\begin{aligned}
& \because t_{2}^{\prime \prime}-t_{1}^{\prime}=\rho \\
& ! \\
& ! \\
& t_{2}^{\prime}-r_{1}^{\prime} \quad f_{1}^{\prime}=-\rho l^{\prime},
\end{aligned}
$$

 that the rantat transfomation ($\because=$) is in this ase of the form

$$
\begin{align*}
& x^{\prime}=f_{1}^{\prime}(x, y), \\
& \eta^{\prime}=f_{2}^{\prime}(\cdots,!) . \\
& I^{\prime}=\frac{\frac{c!}{c r}+r^{\prime}!!}{\frac{t}{4}+t_{1}^{\prime}} \tag{t}
\end{align*}
$$

whim is exactly that of (: 8) , s. 1 .

 formend into a mann of the semond tye.

 $f^{\prime \prime}$ aml f^{\prime}. Lat that equation ho

$$
F^{\prime}\left(\cdots,!, r^{\prime}, \|^{\prime}\right) \quad 11 .
$$

From this equation 1 Ha that

$$
\begin{array}{cccc}
1 F & \prime \prime & r & \prime \cdot \\
\frac{\prime}{\mu \prime} & \frac{1!}{\rho} & \frac{\prime^{\prime}}{r^{\prime}} & \frac{!!}{l}
\end{array}
$$

from which p and f^{\prime} (an be found, with the result that the contact transmmation (\because) can in this case be put into the form

$$
\begin{array}{r}
F\left(x, y, x^{\prime}, y^{\prime}\right)=0, \\
\frac{c F^{\prime}}{c x}+p^{\prime} \frac{\partial F}{c y}=0, \tag{5}\\
\frac{c F^{\prime}}{c x^{\prime}}+y^{\prime} \dot{c} F^{\prime}=0,
\end{array}
$$

whirh is exatetly that of (9), 5.54 .
bis this transformation any mion of the first type is transfomed intu a minn of the second type, each element of the former being lam? fomed into an element of the latter.

As an example consider the transformation

$$
\begin{aligned}
& x^{\prime}=x \mp \frac{k y^{\prime}}{\sqrt{1+y^{\prime}}}, \\
& y^{\prime}=y \pm \frac{k}{\sqrt{1+y^{\prime}}}, \\
& y^{\prime}=p .
\end{aligned}
$$

If writem in the form () this beemes

$$
\begin{aligned}
\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2} & =k^{2}, \\
\left.x^{\prime}-x+y^{\prime}-y\right) & =0, \\
x^{\prime}-x+p^{\prime}\left(y^{\prime}-y\right) & =11 .
\end{aligned}
$$

The genmetrical meaning of these equations is simple. Any line (H) ment (\because, y, p) is transformed into a line element ($x^{\prime}, y^{\prime}, p^{\prime}$) so Wamed that the point $\left(x^{\prime}, y^{\prime}\right)$ is at a distance k from the point (x^{\prime}, y^{\prime}). and the line joining $\left(x^{\prime}, y^{\prime}\right)$ to (x, y) is perpenticular to the lime Wement. I thamemed line element is parallel to the original - Woment. Otherwise stated, cach line edement is moved paalle. (1) iterlf thomgha distance k in a direction perpendienlar to the diremion of the fement Eath line alement is therefore thansfommed inte two line alements. A unim of the tirst type. comsint ines of line froment- thengh the same peint, is transomed into a mion eomsisting of the line eloments of a cirele with that penint as
 (ancor paralled the at a momal distance k from \because
 that rash puint of the phane is dilated into a eirele.

EXERCISES

1. Show that the transformation

$$
\begin{aligned}
& r^{\prime}=r^{\prime} \\
& !^{\prime}=r^{\prime}-! \\
& r^{\prime}=r
\end{aligned}
$$

is a montan trandomman and suly its pronertios.
2. show that the trans fomation

$$
\begin{aligned}
& r^{\prime}=r+\because r^{\prime} \\
& y^{\prime}=!+\prime^{\prime \prime} \\
& n^{\prime}=r^{\prime}
\end{aligned}
$$

is a contan tranformation amb stuly its promertirs.
3. Show that any tifferential whation of the form $f^{\circ}\left(x, \frac{d!}{\prime \prime}, 4\right)=0$
 dontly infinte extent of line elements. To shle the equation is to armare the elements into mans of line mements. In grateral, the solu-

 all the lime ebements thromern earh, while the singular solution is the

 shas that the simglar shlution is the merdimmonmal extent of line

 $\mu=\mu^{\prime}$. Show that the differmatial mationtwnmes $\|^{\prime}-\mu^{\prime} r^{\prime}-\sqrt{1+\mu}=0$.

(HADTER IN

TETRACYCLICAL COÖRDINATES

57. Special tetracyclical coördinates. Whe shatl discuss in this

 ('arterian womblates, thomgh they are often su presented. On the

 in the natial mamer. It is therefore not to be expered that the geometry in the imaginary domain and at intinty shmblater in all reseects with that whamod hy the rese of ('antesian raiimlinater.

The emperdinates we are to diseots are

 whinht lines of referenere introseting at

F1.. \ddagger right angles at 1 , and let I he any real peint of the plane. Let

$$
\begin{equation*}
r_{1}: r_{1}: r_{1}=\| M^{\prime \prime}: M I^{\prime}: 1 \tag{1}
\end{equation*}
$$

 the fumbamental relation

$$
\omega\left(r^{\prime}\right) \quad r_{2}^{\prime}+r_{1}-r_{4}=11
$$

manmer ly the consention that any set of matios sathiving (\because)
 0:0: 0: 11 being of eonme mallowed.
 inger set valus 1:0:0:0. 'Io see this we write equation (1) in the form

 at infmity. This point. howerer, is mot the only one whirh must be comsidered at infinity, as will aperar later.

 distane brewern them. 'Then, hy trignometry,

$$
d^{2}=11^{\prime 2}+i\left(r^{2}-2() I^{\prime} \cdot(1)\left(\cos \left(\theta_{1}-\theta_{2}\right)\right.\right.
$$

 the hefinition of the eoïdinates and from the relations
the atman equation amb be writan

 as the detinition of the distane hetworn imatinaty puint.

Eigution (1) wan be writter

$$
d=-\stackrel{\because(1)(.!1)}{r_{i} . I_{i}}
$$

$$
(\because)
$$

$$
\begin{aligned}
& I^{2} \quad H_{4} r_{1} \quad \because H_{1}-\because \because r+H_{1} \cdot \\
& .4
\end{aligned}
$$

where in accordance with the nsual notation $\omega(x, y)$ denotes the $\mathrm{P}^{\mathrm{ow}} \mathrm{lar}$＊of the form $\omega(. r)$ ．

From（3）it appears that $d=x$ when $y_{4}=0$ or when $x_{4}=0$ ．Hence

since always $\omega(r)=0$ ，the peints at infinity satisfy also the con－ dition $r_{2}^{2}+r_{0}^{2}=0$ ．from which it appears that the point $1: 0: 0: 0$ is the only real point at intinity，as we have alreaty sem．The nature of the locus at intinity will appar later．

59．The circle．If we take the usual definition of a vircle，the equation of a circle with center y_{i} and radius r can be written from （1）尽㱜，a

$$
\begin{equation*}
y_{4} r_{1}-2 y_{2} r_{2}-2 y_{3} x_{3}+\left(y_{1}-r^{2} y_{4}\right) x_{4}=0 . \tag{1}
\end{equation*}
$$

This is of the type

$$
a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}+a_{4} r_{4}=0 .
$$

and the relations between the coefficients \boldsymbol{o}_{i} and the cemer and radius of the circle are reatily found．For we have by direct comparisen of（1）aml（ \boldsymbol{Z}^{2} ）

$$
\rho t_{1}=y_{4}, \quad \rho \prime_{2}=-2 y_{2}, \quad \rho r_{3}=-2 y_{3}, \quad \rho\left(t_{4}=y_{1}-r^{2} y_{4} .\right.
$$

From these and the fundamental relation $y_{2}{ }^{2}+y_{3}^{2}-y_{1} y_{4}=0$ we taxily compute the following values：

$$
\begin{align*}
& \rho!_{1}=a_{2}^{2}+a_{3}^{2}, \\
& \rho!!_{2}=-2 a_{1} a_{2}, \\
& \rho!_{3}=-2 a_{1} a_{3}, \\
& \rho!_{4}=4 a_{1}^{2}, \\
& r^{2}=\frac{a_{2}^{2}+a_{3}^{2}-4 a_{1} a_{4},}{4 a_{1}^{2}}
\end{align*}
$$

 n vatiahl．．in
and the hilinear form

$$
\begin{align*}
& \sum_{i}^{n} u_{1, k, r}, r_{k} \tag{1}\\
& \sum_{i}^{n} r_{1, k}, r_{i} v_{k}
\end{align*}
$$

 the form（1）is trath－formind into

whinh give the reoirelinates of the renter ame the rambins of the

These results, ohtamed primarily for real direles, are now gror eralized lin tefimiten as follows:

We may elassify direles by means of the experesion for the radims.
 that is,

$$
\begin{equation*}
\eta(1)=1_{2}^{2}+1_{3}^{2}-t 1_{1} 1_{4} . \tag{t}
\end{equation*}
$$

We make, then, the following vases:
(SAE I. $\quad \eta(a) \neq 0$. Nimsperial riotes.
 (1) and represents the lown of a perint at a remstant distamer from a tixed point. Neither enter nor ralins is nerossarily real, bat the eenter is not at infinity and the rallins is finite. The cirele does mot (wntain the real foint at infinity, since $1: 0: 0: 0$ will mot satisfy "plation (\because).
 intinite and the center is the real peint at infinity. 'The equation may br writton hy sirg, in the form
whieh, as in (artesim erometry, is a statigh line. This line

 the eoniolinates of the real perint at intinity is that $t_{t}=0$. Hemer
 f"nswes thenel!h the reatl puint at intinity.

$$
\left.\eta_{1}: y_{2}: \eta_{:}: \eta_{1}=-2 \|_{1}: \pi_{3}: n_{3}:-n_{1} \cdot \quad \text { (}\right)
$$

 the only real puint wh the einele. and heme the name" print diele." The print circles do mot pans throurh the rat puint at intinit.

By (\because) , S. ix, the eqnation of a print cirele may be written

$$
\omega(x, y)=0 .
$$

 $\eta(1)=1$ maty he dedmed fomm $\omega(, y)=0$.
 terminate, and the centers. given by (t), beommes - $\boldsymbol{u}_{4}: a_{2}: a_{3}=0$, whirh is a fuint at intinity. The seecial straight lines pass thengry ther real fwint at intinity. In fant, a sperial straight lime moy h,

Wre have reme that the lowns of all prints at infmity is $r_{4}=1$. wheh is the equation of a cirele belonging to the ease now being considered, and with its center at $1: 0: 11: 11$. Hence we say:

The lo.ras at infinity is a sperciel stomiaht liur uhbese center is the rall Imint at intimit!.

EXERCISES

1. (omsiber the peint virele $r_{1}=0$. show that it is made mu) of two ome-dimensional extents ("themb") expmerent hy the eymations $x_{1}: r_{2}: r_{3}: r_{4}=0: 1: \pm i: \lambda$. where λ in an atmany bataneter. show that these thremls hase the ane font $0: 0: 0: 1$ in anmmon, hat that

2. As in Ex. 1. show that the sumed airele $x_{4}=0$ is mompent of t wo threals having the real pent at intinty in amman.

 combinations of the same form threats.

3. Relation between tetracyclical and Cartesian coördinates. It we

$$
r: y: t=11 M: M I^{\prime}: 1 .
$$

the we exish for ant real puint of the phane the followiner relationt

$$
\begin{aligned}
& \rho \cdot r_{1}=r^{2}+y^{2}, \\
& \rho \cdot r_{2}=r t, \\
& \rho \cdot r_{3}=y^{\prime}, \\
& \rho \cdot r_{i}=t^{2} .
\end{aligned}
$$

Whese equations, derived for real peints of the phane at atmine
 the imaginary and intinte pemats introlneed into earh syatem of coïnlinates.

 $0: 0: 0: 0$ when $x^{2}+y^{2}=11, t-11$. That is, the arele prints at infinity neressary in the ('artexian geometry have motare in the totracyelical grometry. Furthemore any peint on the line at intinity $t=0$, wher than a cirele peint, correxponds to the real point at intinity $1: 0: 0: 0$ in the tetacerelical coïrdinates.

 equations will determine a single peint on the ('attesian phane mallase $r_{2}=r_{3}=r_{4}=0$. In this (ase $t=0$ and the ration r : 1 , indeterminate. 'That is, the real puint at intinity in tetmerofical

 is equally as valid as the (amesim. An lomer an erthey ort if

mmotiecable. It is omly when we wish to pass from one set of reördinates the the other we need to eonsither this difference.
61. Orthogonal circles. Consider two proper eireles with real
 point r^{\prime}. Then, if $\left(r_{n}, r_{,}\right.$) is the angle between the matii $r^{\prime} I^{\prime}$ 'and

$$
(r) ;\left(r_{a}, r_{b}\right)=\frac{r_{a}^{2}+r_{b}^{2}-l^{2}}{2 r_{a} r_{b}} .
$$

But the angle between the circles is either ental or supplementary to the angle between their matii. Hence, if we call θ the angle between the circles we have

$$
\begin{gathered}
\cos \theta= \pm \stackrel{r^{\prime 2}}{ }+r_{b}^{2}-1^{2} \\
-r_{a} r_{b}
\end{gathered}
$$

If the equations of the two diretes are
and

$$
\begin{align*}
& { }_{1}^{1} r_{1}+\prime_{2} r_{2}+{ }_{3} r_{3}+d_{4} r_{4}=0 \tag{1}\\
& b_{1} r_{1}+l_{2} r_{2}+b_{3} r_{3}+l_{4} r_{4}=0 \tag{2}
\end{align*}
$$

repuetively, the formala for the angle maty be reduced by (3), s. 59 ,

or, more compartly,

$$
\operatorname{ros} \theta= \pm \begin{gather*}
\eta(a, l i) \tag{3}\\
\eta(a), \eta(l)
\end{gather*}
$$

where $ク\left(1, \frac{1}{}\right.$) is the polare of $\eta(1)$.
Thas formala, whim has been ohtamed for two real proper cireles interserting in a real point, is mow taken as the definition of the
 given by (1) ame (\because) We late it for the reater to shew that if one or both of the areles is a real statight lime the defthition agrees with the mand dofinition.

The anditinn that two rimeles slombly be ontheromal is them

$$
\begin{equation*}
\eta(1, b)=11 . \tag{4}
\end{equation*}
$$

 ant the where airete.

 (\therefore) is imeleterminate.

It is frssibhe in an intinity of ways th tind fome oireles which are mathally orthamomal. Fon if

$$
\begin{aligned}
& \Sigma a_{i} r_{i}=0 \\
& \Sigma a_{1}, r=0
\end{aligned}
$$

is: aty (incle, lhe rimeld

 athe (1;) heins fisad, the cirele

$$
\sum{ }^{\prime}, r_{i}=0
$$

 Foinally, lhe rively.

$$
\Sigma, \cdot r, 1
$$

 Mmatinaly.

EXERCISES

 -1 minhl linn.

T. Find the expations of all eiteles onthogmal to the point virele $r_{1}=0$. How Jo they lie in the phane :
 airale $x_{1}-x_{4}=0$.

$$
r_{1}^{\prime \prime} \prime_{1}+r_{2}^{\prime \prime} r_{2}+r_{3}^{\prime \prime} \prime_{3}+r_{4}^{\prime \prime}=0
$$

are in wheme orthurnal to a fixed rimer and find that virele.
62. Pencils of circles. ('msider two circles

$$
\begin{align*}
& a_{1} r_{1}+a_{2} r_{3}+a_{3} r_{3}+a_{4} r_{4}^{\prime}=0, \tag{1}\\
& b_{1} r_{1}+b_{2} r_{2}+b_{3} r_{3}+b_{4} r_{4}=0 . \tag{2}
\end{align*}
$$

With reference to them we shall prove first the following theorem:

Ton prove this we mote that if equations (1) and (2) are indopendent, at least one of the determinants, $a_{i} l_{i}-a_{j} l_{i}$, must be different from zero. Ilenee we tan swly for whe pair of variables. r_{i} and r_{j}. in tems of the other two For example, we may find from (1) and (关) $r_{1}=r_{1} r_{3}+r_{2} r_{1} r_{2}=r_{3}+r_{3} r_{4}$. If these values are sulbtituted int the fundamemtal relation $\omega(x)=0$, there results a flandratic equation in $r_{:}$and r_{4}. This dotemines two vallas of $r_{3}: r_{4}$, and from eath of these the ratios r_{1} : r_{2} are determinel. This proses the thenem.

It is evielent that the arele frints at intality which are intro-
 here. In (antexan gemmetry it fomm that there are always iwn

 cöndinates there ane motwo frints at intinity ermmont 1 all

 all rimb...

Theorem I hohls of anmor for the aan in whirh the virelt an

Comsider now the equation

$$
\sum_{1}^{4}\left(11+\lambda_{1}\right), 11
$$

(\because)

 the follwwint ty"心:

(b) a fermil of paralled staghe lints.

$$
n_{1}+\lambda \prime_{1}=n_{0}
$$

 limes. This proves thr thenema.

$$
\left({ }^{1} l_{1}-w_{1}^{\prime \prime}\right) r_{2}+\left(w_{1}-"_{1}^{\prime \prime}\right) \cdot w_{1}^{\prime}: \quad{ }^{\prime} w_{1} 1 .
$$

This in a gromial lime when
 (ath ln - atiotiol maly whor
and the equations (1), (\because), and (\because) represent concentrie circles, and the antioal axis is the line at intinity $x_{4}=0$.

In all wher cases the radical ande of two real cireles is a real straigh line.

 rir.
lis si: the momition that (:3) should be a special eirele is

II

$$
\left.\begin{array}{rl}
\eta(11+\lambda l) & =0, \\
\eta(\prime)+2 \lambda \eta(\prime, l
\end{array}\right)+\lambda^{2} \eta(l)=0 . ~ \$
$$

This equation determines two distinct or equal values of λ unless it is identiatly satistied. Whane the theorem is proved.

If the pemet is detined by two real proper eireles, the sperial dircles are point cireles, since by II there is only one straight line in the pemil amed that is real and monsperial. It is not difficult to show that if the cirches of the pencil intersed in real points. the eler ial eireles have imaginary eenters: if the eireles of the peneil interom in inaginary prints, the sperial cireles have real centers ; and if the oiveles of the puncil are tamgent, the centers of the equectal rirefes exincide at the peint of tangener.
 wird, at the permil.

Lat $\sum \because a=0$ be ortheromal to (1) and (\because) . Then

$$
\eta(\therefore, 1)=0, \quad \eta(c, b)=0 ;
$$

wherw

$$
\eta\left(\because, n+\lambda l_{1}\right)=\eta\left(\cdot,(1)+\lambda \eta\left(\because, l_{1}\right)=1\right.
$$

fin all salne of λ. This proves the theorem.
It follow- from this and stit that a wirch ortheromal to at

 rantion anis.

These considurations lead the following theorem:

 "f the xyertial riveres of the wher

EXERCISES

1. Shw that two real eireles internent in two mal distinet points,
 $\left[\eta\left(1, l^{\prime}\right)\right]^{2}-\eta\left({ }^{\prime \prime}\right) \eta\left({ }^{\prime \prime}\right)=0$.

 abe mancutrix.
 the anturs of the cimble of the whthental |nemeth.

63．The general tetracyclical coördinates．Let us take as cireles of moferner any four cireles mot intersecting in the same print and the cymations of wheh，in the spectal tetracyelial courdinates thas far Had，are

$$
\sum n_{i} r_{1}=10, \quad \sum \beta_{i} x_{i}=0, \quad \sum \gamma_{i} x_{i}=0, \quad \sum \delta_{i} r_{1}=0,
$$

ami lid nis phate

$$
\begin{align*}
& \rho \cdot \Gamma_{1}=q_{1} r_{1}+v_{2} x_{2}+u_{3} x_{3}+q_{4} r_{4}, \\
& \rho I_{2}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} r_{4} \text {, } \tag{1}\\
& \rho \mathrm{I}_{3}=\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{3}+\gamma_{4} r_{4} . \\
& \rho H_{4}=\delta_{1} x_{1}+\delta_{2} x_{2}+\delta_{3} x_{3}+\delta_{4} \mu_{4} .
\end{align*}
$$

－ince the fonr rircles do not meet in a point their equations rammo be satistied her the same values of x_{1} ．and therefore the Wetemimant of the coefficients in（1）does not vanish．Therefore the egnations ean be solved for x_{i} with the result

$$
\begin{align*}
& \sigma . I_{1}=A_{1} X_{1}+B_{1} I_{2}+\Gamma_{1} \cdot I_{3}+\Delta_{1} I_{4}, \\
& \sigma \cdot r_{2}=A_{2} I_{1}+B_{2} H_{2}+\Gamma_{2} X_{3}+د_{2} X_{4}, \\
& \sigma x_{3}=A_{3} \mathrm{H}_{2}+\mathrm{B}_{3} \mathrm{H}_{2}+\mathrm{\Gamma}_{3} \mathrm{X}_{3}+\nu_{3} \cdot \mathrm{H}_{4}, \tag{2}\\
& \sigma_{r_{4}}=A_{4} \Gamma_{1}+B_{4} X_{2}+\Gamma_{4} I_{3}+\Delta_{4} \Gamma_{4} \text {, }
\end{align*}
$$

Whare A_{i} is the eofator of a_{a} in the deteminamt of the coefferients． uf（ 1 ），B_{i} the cofator of β_{1} ．ete．

The lelation between the datios $x_{1}: x_{2}: x_{3}: x_{4}$ and $X_{1}: J_{2}: I_{3}: I_{4}$ is therefore one wore and the latter mation maty be taken as the
 maindinates．

A grommetra moaning may be given to these coürtinates as fu引いかs：

If the virele with the（＇artesian equation

$$
1\left(r^{2}+y^{2}\right)+b x+!!+1=0
$$

 at it，then the expmesion

$$
1\left(. i^{2}+1 i^{2}\right)+l, x+\cdots!+1
$$

I is a real peint inside the cirele, the powere maty be define. an the
 Alon, if

$$
16+\cdots y+1 \ldots 0
$$

is a real straight line, the expersinn

$$
1, x+\cdots y+1
$$

is promertimal the thagh of the perpendioular from any real peint to the line.

By virue of soth these relations hald for a linear equation in
 imsolven are imaginary, the phatientury is largely a matter of definition. We may say, then:

 the cirale of reforomere is a struight lint, the "inustant times the le mith of the perpemderular frimen the perint to the lime.

By means of (1) the fundanental relation $\omega\left(x^{\prime}\right)=0$ gose (5 , intw the new fundanental relation

$$
\Omega(r)=\sum{ }^{\prime \prime} u_{k} \cdot r_{k} X_{k}=0,
$$

and the fular "quation $\omega(x, y)=0$ becomes

$$
\begin{equation*}
\Omega(I, Y)=\sum^{\prime \prime}{ }_{2 k} Y_{i} r_{k}=0, \tag{t}
\end{equation*}
$$

where the determiname $\boldsymbol{u}_{2 k}$ dees mot vanish.
The real peint at infinity hats now the reierdinates $I_{1}: X_{2}: I_{3}: X_{4}$

 intinity has the equation

[^5]I rifle with the equation

$$
u_{1} r_{1}+u_{2} r_{2}+u_{3} r_{3}+u_{4} r_{4}=0
$$

has in the new maindinates the equation
where

$$
\begin{align*}
& I_{1} X_{1}+I_{2} I_{2}+A_{3} X_{3}+I_{4} X_{1}=0, \\
& p \prime_{1}=n_{1} \cdot I_{1}+\beta_{1} \cdot 1_{2}+\gamma_{1} \cdot I_{3}+\delta_{1} \cdot 1_{4} . \\
& \rho \prime_{2}=\alpha_{2} 1_{1}+\beta_{2} 1_{2}+\gamma_{2} \cdot 1_{3}+\delta_{2} \cdot 1_{4}, \\
& \rho u_{3}=\alpha_{3} \cdot I_{1}+\beta_{3} \cdot I_{2}+\gamma_{3} \cdot I_{3}+\delta_{3} 1_{1}, \tag{i}\\
& \rho u_{4}=r_{4} 1_{1}+\beta_{4} 1_{2}+\gamma_{4} I_{3}+\delta_{4} 1_{4} .
\end{align*}
$$

lis virtue of these relations the condition for a special circle $\eta(14)=0$ becomes a new relation

$$
\begin{equation*}
H(A)=\sum h_{i k} A_{i} A_{k}=0 . \tag{ii}
\end{equation*}
$$

and the condition $\eta(a, b)=0$ for orthergmal vire le becomes

$$
\begin{equation*}
H(A, l)=\sum b_{i k} A_{i} B_{k}=0 . \tag{i}
\end{equation*}
$$

The form $\mathrm{H}(\mathrm{t})$ may be computed directly from $\Omega\left(\mathrm{I}^{\prime}\right)$ as follows:
 with the renter Y_{i} is

$$
\Omega(I, I)=0 .
$$

Homer, if

$$
1_{1} Y_{1}+1_{2} Y_{2}+.1_{3} Y_{3}+1_{4} X_{4}=0
$$

is a point circle. We must have

$$
\begin{equation*}
\rho \cdot I_{i}=u_{i 1} I_{1}+u_{i 2} I_{2}+u_{i z} I_{3}+u_{1 i} I_{i} . \tag{}
\end{equation*}
$$

These equations wan be solved for Y_{i} since the determinant $"_{0}$ dues a ot vanish. Bat Y^{\prime} being the coürdinates of a point mst satiffy the fundanmat relation (3). Substituting, we obtain a rebatimon between the is to be satisfied by any point circle. This can to. nothing else than the condition

$$
H(.1)=0 \text {. }
$$

B? virtue of (C) we havre aromdingly,

$$
\begin{align*}
H(.1) & =k \Omega\left(J^{\prime}\right) . \\
\sigma . I_{i} & =(\Omega \\
H\binom{(\Omega)}{15} & =k \Omega\left(V^{\prime}\right) . \tag{9}
\end{align*}
$$

11..n!e. we havre

Also the form $\Omega\left(V^{\prime}\right)$ mat be eomphed from the form H (.1) an

 ariondinates of the ember of the this condition is

$$
l_{1} I_{1}+l_{2} I_{2}+l B_{1} I_{3}+l i_{4} I_{4}=0
$$

Hentr, by momarison with (T).

$$
\begin{equation*}
\rho \cdot I_{2}=b_{1} \cdot 1_{1}+b_{12} 1_{2}+l_{1} 1_{2}+l_{14} \cdot 1_{4} \tag{11}
\end{equation*}
$$

 (ti). We have a relation satisthed by the courdinates of any print. This ram mbly be

$$
\Omega(X)=0
$$

By vinue of (10) we have, aremelingly,

$$
\begin{align*}
& \Omega(.1)-l \|(.1) \text {. } \\
& \text { Bint (11) am be written } \quad \sigma \mathrm{K}_{4}=\frac{11}{1.1} \text {. } \\
& \text { Hene we have } \quad \Omega\binom{c \mathrm{H}}{c .1}-K H(.1) \text {. } \tag{11}
\end{align*}
$$

64. Orthogonal coördinates. Partionlar interest attachern the (abe in whirh the fume cirelts of refereme are matually ortheranal. If

 we hatre

$$
11(.1)=k_{1} 1_{1}+k_{1} 1+k_{1} 1+k_{1} 1
$$

$$
\rho . I_{i}=K_{i} \cdot 1_{i}
$$

$$
\Omega(X)=\frac{r_{i}}{l_{i}^{2}} \frac{1}{1}+\frac{1}{1}+11
$$

$$
\begin{aligned}
& 11.1,1+1+1+1 \\
& 11(.1)-1+1+1+.1
\end{aligned}
$$

$$
\begin{aligned}
& \rho \cdot I_{1}=r_{1}-r_{4} \\
& \rho \cdot I_{2}=2 \cdot r_{2} \\
& \rho I_{3}=2 \cdot r_{3} \\
& \rho \cdot I_{1}=-i\left(r_{1}+r_{4}\right)
\end{aligned}
$$

Where x are the spectal corindinates of s.in. The form ciredes of reference are a real cirele with eenter at 11 and radius 1 , two pergendienlar straght lines thromgh (o, and an innaginary eirele with (xnter all 11 and radins i.
65. The linear transformation. Let x_{i} be any set (sperial or (gentral) of totacydial ärolinates where $\omega(x)=0$ is the fundamental relation, and consider the transfomation defined by the equations

$$
\begin{align*}
& \rho \cdot r_{1}^{\prime}=a_{11} r_{1}+a_{14} r_{2}+a_{13} r_{3}+a_{14} r_{4}, \\
& \rho \cdot r_{2}^{\prime}=a_{21} r_{1}+a_{2 r_{2}} r_{2}+a_{23} r_{3}+a_{24} r_{4}, \tag{1}\\
& \rho \cdot r_{3}^{\prime}=a_{31} r_{1}+a_{32} r_{2}+a_{3 ; 3} r_{3}^{\prime}+a_{34} r_{4}, \\
& \rho \cdot r_{4}^{\prime}=a_{41} r_{1}+a_{42} r_{2}+a_{4} r_{3}+a_{44} r_{4},
\end{align*}
$$

Where the determinant of the enefliefonts a does not vanish and Where x_{i}^{\prime} satisties the same fundamental retation as x_{i}.

Ly means of (1) any point x_{i} is transformed into a point x_{i}^{\prime}, and since the equations wan be solved for x, the relation between a point and its transformol pront is one to one.
liy means of (1), ahso, any eirele

$$
u_{1} r_{1}+u_{2} r_{2}+u_{3} r_{3}+u_{4} r_{4}=0
$$

is tramsfommed into the virele

$$
a_{1}^{\prime} \cdot r_{1}^{\prime}+a_{2} \cdot r_{2}^{\prime}+a_{3}^{\prime} r_{3}^{\prime}+a_{4}^{\prime} \cdot r_{4}^{\prime}=0,
$$

Where

$$
\rho \cdot u_{1}^{\prime}=1_{i:} u_{1}+A_{i:} u_{2}+1_{i z} u_{3}+A_{i 4} u_{4} .
$$

 thansommed puints respertively, the equation

$$
\omega(x, y)=1
$$

is tran-formen intw ibe equation

$$
\omega\left(r^{\prime}, y^{\prime}\right)=0,
$$

 into the cetuter at the trothetormed airele.

 formation is also of the form (1) this is impussible.

Wre may acoordingly infor that he the tansfomation (1) the equation $\eta(1 d)=0$ is transormed into itself.

We may distingmish betwern two main dasses of tran formations of the form (1) aneoreling as the real fuint at intinity is intariant wrote 'The trath of the followiner thenem is revent:

 two riveles is equal to the angle between the two transfoment

66. The metrical transformation. Wre shall pros. timt that at"!

 this that the transomation an be expressed as a linear tamsion

 Hence the thement is prosed.
 stmatht lines, it must leate the pal fuint at intimity insariant.

 the metriont !roup. This may he shewn as follows:

If the real !exint at intinity is insariant. the lowes at intinity is transformed into itself. since it is a special cirele with its center at the real print at intinty. Therefore any linear transfomation of
 invariant is equivalent to a transformation of the sperial cö̈ndinates of $\stackrel{s}{5}$ T. Which leaves the puint $1: 0: 10: 0$ invarime and transforms the locus $r_{+}=10$ into itself : that is, to a transformation of the form

$$
\begin{align*}
& \text { p. } r_{1}^{\prime}=n_{11} r_{1}+n_{13} r_{2}+n_{13} r_{3}+n_{14} r_{1}, \\
& \text { p. } r_{2}^{\prime}=\quad a_{2 r} r_{2}+a_{2 \pi} r_{i=}+a_{2 i} r_{4}, \\
& \rho . r_{3}^{\prime}=\quad a_{332} r_{2}+r_{33} r_{3}+a_{34} r_{4}, \tag{1}\\
& \text { p. } r_{4}^{\prime}=\quad r_{4} \\
& r_{2}^{\prime 2}+r_{3}^{\prime 2}-r_{1}^{\prime} x_{1}^{\prime}=k^{2}\left(r_{2}^{2}+r_{3}^{\prime 2}-r_{1} r_{4}\right), \tag{2}
\end{align*}
$$

we have, for the coettionemts, the comditions

$$
\begin{align*}
& a_{3}^{2}+a_{32}^{2}=a_{23}^{2}+a_{0,}^{2}=a_{11}=\frac{k^{2}}{\rho^{2}}, \\
& n_{22} n_{23}+n_{122} r_{33}=0 \text {. } \tag{3}\\
& n_{12}-2\left(n_{2: 2} n_{24}+n_{82} n_{34}\right)=0 \text {, } \\
& n_{13}-\because\left(a_{3: 3} n^{2}+a_{i n j} n_{34}\right)=11 \text {. }
\end{align*}
$$

Now the last three equations of (1) are equivalemt the equat tions in Cartesian coürlinates

$$
\begin{aligned}
& r^{\prime}=n_{w} r+n_{2 y} y+n_{21} . \\
& y^{\prime}=n_{s z^{\prime}} r+n_{i=2} y+n_{i=1} .
\end{aligned}
$$

 newerary to make this a metrieal tranempation. The first eqnat

 and n_{1} ate then detmined ty (:3). This prowe the thentem.
67. Inversion. 'Twn
 t"': From this it follows that if ' is a staghth lime two inserse

 it is matmal to defthe the inserse of a feint on the straight lime. ' as the point itnelf.
 inverse of A is the real f"int at intinity, sine the riveles whieh
 perpundienlar to $1:$ If P is mon at A
 pase thromert A, sime that line is a - imelle through I and I^{\prime} which hy deti-

 and $\rho^{\prime} \therefore$ that

$$
.1 M=\frac{1}{2}\left(.1 I^{\prime}+.1 I^{\prime}\right)
$$

aml with $1 /$ as a collter eomstrmet a *ibele throlgh l^{\prime} mat l^{\prime}. If $l i$ is the rantins of this cirele. $R=\underline{!}\left(.1 J^{\prime}-.1 I^{\prime}\right)$.
 かher. Wי hatw

$$
1.1^{2}-I^{2}=.1 I^{\prime} \cdot 1 I^{\prime}
$$

$$
M^{2}+r^{2}-1 H^{2}=11
$$

$$
\begin{equation*}
1 I^{\prime} \cdot 11^{\prime}=\cdots \tag{11}
\end{equation*}
$$

 the detinitum wisen in this sertion is wider than that ins sis, since it bothe when the wirde theomes a statight line.
 a foint tamamation be wheh eath peint of the phame is tans-

 tansfomation

$$
\begin{equation*}
\rho \cdot r_{i}^{\prime}=\lambda_{1} r_{i}+" 1_{i} \underline{\Sigma} \cdot \prime_{k} r_{k}, \tag{2}
\end{equation*}
$$

where $\Sigma r_{k}=0$ is the equation of \because Now let $\sum b_{i}=0$ be any , irele thengh $r_{\text {a }}$ and its transfomed peint r_{i}^{\prime}. Since $\sum h_{r} r_{i}=0$ and $\Sigma \Sigma_{i}^{\prime}=0$. we have from (\because) ,

$$
\begin{equation*}
"_{1}^{n_{1}}+w_{2} l_{3}+w_{3} l_{3}+w_{4} l_{4}=0 . \tag{:3}
\end{equation*}
$$

If $\Sigma b_{1}=10$ is ortheromal to f^{\prime}, we have

$$
\begin{equation*}
\eta(\cdots, \cdot)=\frac{1}{\because}\left[r_{1} \frac{i \eta}{r_{1}}+b_{1}^{r} \eta+b_{n} r_{r} \eta+b_{4} \frac{r \eta}{r_{i}}\right]=0 . \tag{4}
\end{equation*}
$$

and therefore if (t) is satiotiod hy all values of h, which satisfy (: 3). "er may Phare

$$
n_{i}={ }_{r_{i}}^{\prime \eta}
$$

 in phate of the smbul $\leq r_{2}$, . We hate

$$
\begin{equation*}
\omega(\lambda . r+\cdots \cdot 1)=\underline{-} \lambda .1 \omega(r, \mu)+. I^{\prime \prime} \omega(1)=0 . \tag{i}
\end{equation*}
$$

Hamen
and - inne.

$$
\begin{aligned}
& \text { ('1) }-1 r_{1} \text {. } \\
& \text { '" }
\end{aligned}
$$

Therefure $\quad \omega(x, \pi)=\frac{1}{2} \sum \cdot r_{i}^{(\omega)}=\frac{k}{2} \sum r_{1} r_{1}=\frac{k}{2} .1$,
amd. from (i) , $\quad \lambda=-\frac{1}{k} \omega(1 /)=-\eta(\cdot)$.
W_{t} has: consequently built up the transformation

$$
\rho \cdot r_{i}^{\prime}=r, \eta(r)-\frac{c \eta}{r_{r}^{\prime}} \sum_{i} r_{k} r_{k},
$$

Which is an insere transomation, since it transforms duy fuint r.

68. The linear group. We are wow proparel to prome the follewing proposition:

An!! linear tremstormetion l!! whi.h the real lumint at intinity is inmeriment or is tritnsformed int" "pmint mat at intinit! is the fromburt

To prove this let The a transformation of the form

$$
\rho \cdot r_{1}^{\prime}=n_{11} r_{1}+\alpha_{i 2} r_{2}+\alpha_{i 3} r_{3}+\alpha_{i 4} r_{4},
$$

hemeans of whith the relation $\omega(x)=0$ is transfomed into itself.
If the real point at infinity is invariant, the tran-mmation is

 to whith an insersion I is carmed ant. By I the point A goes inno

 it . 1 . Thell

$$
I T-1 /
$$

whent..

$$
T=I^{1} M=1.1 \% .
$$

of staight lines and many properties of peatils of eireles obtained

The distinetina betwern eperial and monsperial cireles is, howwer. fumbancmal. sine a eirele of one of these elasses is tramsformen! inte at wirde of the same clas.

EXERCISES

 tor the orthemmad comphates of sit.
 imberson on the eimele of mat mathe with its rentre at the origin, and

3. Show from (fi), E6, that inversion on a fumbamental airele

 momamsed.
4. Prowe that a phane figure is mablaged hy fome inverams on four ortheramal aireles.
5. Shme that threw inversions on orthogonal rimene have the sathe effert as an invernion on a fourth eibele orthegemal to the there
6. Prew that the pertuct of two inversions is commatation when

 and mak, the same angle with earh other.

$$
\underline{L}^{\prime \prime} r_{1} r_{1} r_{2}=0 \text {. }
$$

69. Duals of tetracyclical coördinates. Sy ambicipatins alitil. of

 coumplimates in space of thee dimemsioms. then

$$
\begin{equation*}
\omega(r) \quad 1 \tag{1}
\end{equation*}
$$

 the plante. 'The print at intintity is a print on (1) mot meressarily geometrieally feenliar, and the staight lines in the tetracyedieal phate are duals the plane soretions of (1) thromerh this pemt.

 the equation

$$
x^{2}+y^{2}-z^{2}=11
$$

 the following thalintio properties:

The well pumt at intintit.
Any rimer.

Any mimather lime

1 fuma rave.
The wenter of a mint amble.
A. an- mat stamint lim.

The spertal hate at intimer

Th, , Miqutic purthlulmat

The lmint at intinity on w $\%$.
Any phatur s+uplon.
In rilinate suthon mak is a phate mit parallel tw 1%.

A Pamblat antion mand in at 1hame [amilh.] 1w (1\%.
 fhat.
 phan mat paratiol in w\%

 f1an!
 (a) intin+
 mental eypation in

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}=0 .
$$

Whith wam be whamed fom the special orthogonal system given
 dhaliste with the wometry on the smeare of the sphere

$$
r^{2}+y^{2}+z^{2}=1
$$

In thin cane the wotacrelical point at infmity is duatistice to the
 phan are datistive to emeles on the sphere the straight lines on
 -phere. This bings into olar light the absolate equivalence of a -tratight lime and eireld by the nse of tetracrelical coriodinates. In fatt. the phane gemmetry on the tetanerlieal phane is the stereoEraphe projection of the sherieal geometry.

Towe this rake the sphere whese equation is

$$
y^{2}+y^{2}+z^{2}=1
$$

 (11) it. The equation of the straight line $\mathcal{N} /$ ' is

$$
\frac{r}{\xi}=\frac{\eta}{\eta}=\frac{z-1}{\zeta-1}
$$

and this line interserts the phane $z=0$ in a point O with the coïrelinates.

$$
r=\frac{\xi}{1-\zeta}, \quad y=\begin{gathered}
\eta \\
1-\zeta
\end{gathered}
$$

From these eqpations and the equation $\xi^{2}+\eta^{2}+\zeta^{2}=1$, which "xperens the fact that I is on the sphere we may empute

$$
\xi \quad \begin{gathered}
\because \\
r^{2}+y^{2}+1
\end{gathered} . \quad \eta=\begin{gathered}
2 \\
r^{2}+y^{2}+1
\end{gathered} . \quad \zeta=\frac{r^{2}+y^{2}}{r^{2}+y^{2}+1} \quad .
$$

from which, ly plating

$$
\xi-\begin{array}{r}
r_{2} \\
x_{i}
\end{array} \quad \eta=r_{4}^{r_{4}} \quad \xi=\frac{r_{1}}{r_{4}},
$$

w. have

$$
\begin{aligned}
& \rho \cdot r_{1}=r^{2}+y^{2}-1, \\
& \rho \cdot r_{2}=\because r \\
& \rho \cdot r_{1}=\because \\
& \rho \cdot r_{1}-r^{2}+y^{2}+1 .
\end{aligned}
$$

$$
\rho \cdot r_{1}=r_{1}^{\prime}-r_{i}^{\prime}, \quad \rho \cdot r_{2}=\because r_{3}^{\prime} \quad \rho . r_{i}=\ddot{-r} r_{3}^{\prime} \quad \rho . r_{4}=r_{+}+r_{i}^{\prime}
$$

From this relation we maty rean of the followimg dhatiotio poperties:

I'lın'

Any print of the hane.
Ther peint at intimity.
Aby virele.
I straight line.

A pint arele.
The whter of : print virele.
A.perial straght lime.

Ther center of a sperial straight hate.

The suerial line at intinity.
Patallull limes.
ry, herin
Any print on tha- -phere.
The print .1.
A rimele (amy plate suction).
A rimele thrmerta.
I sertion mand lis a tancent platu.
 phan mot pasime thangh $\begin{aligned} & \text { at. }\end{aligned}$

Tha luint of tancenty of ther tansent ham.
 through V.

I ["mint on the plan $:=1$ nut mineritent with. 1.

The section matte hy the bhate $z=1$ (at tathent phant
('imeles tament tw ald other at 1.

CII.APTER X

A SPECIAL SYSTEM OF COÖRDINATES

70. The coordinate system. Wach of the tworoïrdinates. x amly in a ('artexian system is of the type deseribed in S 7 for the enourdimate of a print on a line. An interesting example of amore gemeral lye of coürtinates maty be ohtamed he taking eath of the courdimates in the mamer deseribed in ss. We shall develop a little of the geometry ohtamed. 'The results will be of importance chaty as showing that math of the wethaty fomventions ats to pints at intinity and the ortinary elassification of arres is depement on the rhoiere of the woindinate system. This fatt has already come to hight in the Hese of teratryedical corimdinates. The present ehapter emphasizes the fact.
'To whtain war ssism of äortinates take two axts old and 0 F (Figr for) intersecting in (1 at right

Fil: 49 angles, amd on tach axis take bexides 11 another point of refor-

 caimelinates of $1 /$ bedefinal as inse hy

$$
\begin{aligned}
& \lambda=\frac{k_{1} \cdot 11 M}{l_{2} \cdot 1 . M}=\frac{r_{1}}{r_{2}} \\
& \mu=\frac{k_{2} \cdot(1, N}{h_{i} \cdot l \cdot N}=\frac{l_{1}}{\mu_{2}}
\end{aligned}
$$

 and Promen twintinity.

 matedisitely from 1 . This maty hapron in there wats:

 the eonstant value detmmine the ally pint on the statight lime.

 tive axis, and therefore the ratio $r_{1}: r_{2}$ aplowathe h_{1} : h_{i} and the

These are the only fonints whith we reownize as at intinity. In other worls, il I recerles inmefinitely from $1 /$ it will mot he ann-

 hatre. thent. the propusition

$$
\begin{equation*}
\left(k_{2} I_{1}-k_{i^{\prime}}\right)\left(k_{i} H_{1}-k_{i: 2} H_{2}\right)=0 . \tag{1}
\end{equation*}
$$

To define the matmer of the lexes at intinty we mote first that ath equation withere

$$
\begin{equation*}
{ }_{1} r_{1}+{ }_{1} r_{2}=1 \tag{2}
\end{equation*}
$$

 allit thereypation

$$
4_{1}, H_{1}+{ }^{2} n_{2} 11 \quad(\because)
$$

 hatre. then, the properition

which are mot su parallel. The straight limes which are parallel to (ox or (1) we shall wall sperial lines and divide them inte two familice of paabled lines. Limes which are not sperial we shall call modimer! limes. We have already seen that a special line has a poin at intinity which is pecoliar to itself and that all ordinary lines have the same point at intinity; namely, the double point at intinity. We may acordingly state the following theorems, the prowte of which ate obvems:
I. T'ren sperial lines of the seme tiamily huee me print in commen.
II. T'sen sperial limes at different fiemilios, or a spectial line ame an wrdimury! line. hume wnly une print in rommenn which lies in the tinite regione of the phate.
III. Ther, nempurellet ardimery limes hater alweys the double perint at infinity amb ome "there finite pmint in cummmen.
IV. Ther" perallel ordinary lines hate only the dable point at intinit!! in rommon.
71. The straight line and the equilateral hyperbola. From the ciluations

$$
\begin{aligned}
& \rho \cdot r_{1}=k_{1} \cdot(1 H, \\
& \rho \cdot r_{2}=k_{2} \cdot A M,
\end{aligned}
$$

which define the coürdinates, we may whtain
$\rho\left(k_{i z} r_{1}-k_{1} r_{2}\right)=k_{1} k_{2} \cdot\left(1.1=k_{1} k_{: 1}^{\prime \prime} ;\right.$
whenee

$$
\left(1 . H=\frac{w k_{k_{2}} l_{1}}{k_{2} r_{1}-k_{1} r_{2}} .\right.
$$

Similarly, $1 N=\frac{h_{1}, k_{1}}{k_{1}, 1_{1}-k_{3,1}, 1_{2}}$.

F1...51)

Now let (Fig. ion) be a fixed print with mairtinates ($\mu_{1}: n_{0}, \beta_{1}: \beta_{2}$), let ('l) be the line thengh (parallel to of: amt

Comsider new a lenens detimed bey the comdition

$$
\frac{\left(M^{\prime}\right.}{C . V^{\prime}}=1 \cdot 0 H \mathrm{st} .
$$

 in of the form

$$
\left(r_{2} r_{1} n_{1} r_{2}^{\prime}\right)\left(k_{1} \cdot \prime_{1}-k_{n} n_{2}\right)-1\left(\beta_{2}^{\prime \prime} \beta_{1} \mu_{1}\right)\left(k_{2} r_{1}-k_{1} r_{2}\right)-0, \quad(1)
$$

Wherea is a comstant.

 latst of which is all intininy.

$$
\left({ }^{\prime \prime} \prime_{1} \quad n_{1} r_{2}\right)\left(\beta_{2} \prime_{1}-\beta_{1} \prime_{2}\right)-\left\|\left(k_{1} r_{1}-l_{1} r_{2}\right)\left(k_{1} n_{1}-l_{1} \mu_{2}\right) \quad\right\| . \quad(\because)
$$

 1hn finm

$$
\begin{equation*}
A r_{1} n_{1}+r r_{1} H_{1}+r r_{1}+I n n_{1} n \text {. } \tag{1}
\end{equation*}
$$

Whath is a hilimear eqtation! in ra : . ant! ! : ".

In the first phace it is casy then shat the necessary and suffirient condition that (1) should factor into the form

$$
\left(x x_{1}+h_{1} r_{2}\right)\left(c y_{1}+y_{1} y_{2}\right)=0
$$

is that $.1 / 1-B^{\prime}=1$. Furthermore, the neecsary and sufficient comdition that (1) showh be satisfied by the coürdinates of the domble point at infinity is

$$
.1 k_{1} k_{3}+1 k_{1} k_{4}+\left(k_{2} k_{3}+I\right) k_{2} k_{4}=0
$$

We shall denote the lofthand member of this equation by K and make four cates acoording th the ranishing or momanishing of the two quantities K and $A l)-B C$.
 and the fords does not pass throngh the donble point at intinity. Therefore it camme be of the type (1), $\leqslant 71$. It will be of the form ((\because), 571 , however, if we can tind $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$, and a to satisfy the equations

$$
\begin{aligned}
\alpha_{2} \beta_{2}-a k_{2} k_{4} & =\rho . l, \\
-a_{2} \beta_{1}+a k_{2} k_{3} & =\rho l, \\
-a_{1} \beta_{2}+a k_{1} k_{4} & =\rho(\prime, \\
\alpha_{1} \beta_{1}-a k_{1} k_{33} & =\rho l .
\end{aligned}
$$

These equations cam be solved by taking

$$
\begin{aligned}
a_{1} & =\left(1 k_{3}+I\right) k_{4}, \\
a_{2} & =-\left(1 / k_{3}+B k_{4}\right), \\
\beta_{1} & \left.=B k_{1}+I\right) k_{2}, \\
\beta_{2} & =-\left(1 / k_{1}+\left(k_{2}\right),\right. \\
a & =B(B-1) .
\end{aligned}
$$

Hence equation (1) represents a sperial lipermota.
 and the lowe pases therogh the double peint at infinity. We shatl rompare the equation with (1), 571 . The herns of the equation
 which we will take at $\left(n_{1}: n_{2}, \beta_{1}: \beta_{2}\right)$. Coing thene values in (1). Sil, ant compring with (1) of this section, we have

$$
\begin{aligned}
& -m k_{1}-1 k_{2}=p .1, \\
& 1 ;=\rho /, \\
& -1 N_{1}+\cdots k_{1}=\rho r^{\prime} \text {, }
\end{aligned}
$$

 $K=0$. Since $1 / 1$ - $1 ; C^{\prime} \neq 0$. "tamot be zero.

Therefore the low represents and ondary stmatht line.

 line ran be at intinity simer the loens does mot pasis thromgh the (lomble print at intinity.

 of these lines mast be at intinity sine the lowere pases thenght the domble puint at intmit!.

 by (1) whell $1 I^{\prime}-I^{\prime}=0$. we hate the following result :

 puint at inctimity.

73. The bilinear transformation. ('onsither the transformation

$$
\begin{array}{ll}
\rho \cdot r_{1}^{\prime}=a_{1} r_{1}+\beta_{1} r_{2}, & \left(a_{1} \delta_{1}-\beta_{1} \gamma_{1}=1\right) \\
\rho \cdot r_{2}^{\prime}=\gamma_{1} r_{1}+\delta_{1} r_{2}, & \\
\sigma!!_{1}^{\prime}=r_{2}!_{1}+\beta_{2} \mu_{2}, & \left(a_{2} \delta_{2}-\beta_{2} \gamma_{2}=0\right) \\
\sigma!I_{2}^{\prime}=\gamma_{2} \mu_{1}+\delta_{2} \prime_{2}, &
\end{array}
$$

 into any two suenial lines.

1ll. The peint at intinity may be fixed of be tanafomed into any other punt wither at intmity we in the finite part of the phane.

V. If the domble peint at intinity is tamsomed into a tinite
 at intints, any ondinary lime is trasformed into a seecial hyperbola
 an ordinary straigh lime. The line $A f$ is transfomed into itself.

EXERCISES

1. Shaw that the rems ration of the forr perints in whinh a sueriat
 bilmasar tamsformation.
 amb also the tamsfomation ohtained as the promet of this and the bilmear tramsformation of the text.
 by ther.equations

$$
\lambda=\frac{r-\pi}{1-!}=\begin{aligned}
& 1+! \\
& r+\pi
\end{aligned} \quad \mu=\begin{aligned}
& r-! \\
& 1+!
\end{aligned}=\begin{aligned}
& 1 \cdots! \\
& r+\because
\end{aligned}
$$

REFERENCES

Fin the hemetit if thment whe may wih th real more wh the subjerts

fion roll tiontine:

 -

PART IH. THREE HMENSONAL (EEOMETRS

('HAPTER XI

CIRCLE COÖRDINATES

74. Elementary circle coördinates. As the tirst example of a
 at theerthmensiomal gernmetry, We will take the virele. If we ronsibur at real pooner virle with the rathos r and with its remter al

 erneral, however, to take the (artesian equation

$$
\left."_{1}\left(r^{2}+y^{2}\right)+"_{2} r+"_{3} y+"_{4}=1\right) \quad(1)
$$

$$
u_{1} r_{4}+u_{42} r_{2}+u_{4} r_{1}+u_{4} r_{4}=0 . \quad(\because)
$$

 (x)erdinates y_{i} ohtained from eqnation (\because) are the seme as the

 (01mtroud ! ! the relation:

$$
\text { a) (r) } r_{1}^{2}+r_{1}^{2}+r_{i} 11 . \quad(\because)
$$

 viruly in

$$
\begin{equation*}
y(11)="_{i+1}^{i}+"_{i-1}^{i+u_{i}+w_{i}} \quad 11 . \tag{1}
\end{equation*}
$$

 "1. is

$$
\begin{equation*}
a(!, r)=\eta_{1} r_{1}+!_{2} r_{2}+!_{3} r_{s}+\eta_{4}^{\prime \prime}=11 \tag{i}
\end{equation*}
$$

 wreperat it in at thentem:

Two cireldes witlo the coürdinates r_{2} and u_{i} are ortheremal when

$$
\begin{equation*}
\eta\left(r_{2}, n^{\prime}\right)=r_{1} \mu_{1}+r_{2} n_{2}+r_{3} u_{3}+r_{4} n_{4}=0 . \tag{ii}
\end{equation*}
$$

From this we may derluee the following theorems:
II. A limetar equation

$$
\begin{equation*}
a_{1} u_{1}+"_{2} "_{2}+a_{3} u_{3}+{ }_{4} "_{4}=0 \tag{7}
\end{equation*}
$$

For equalion (7) is simply equation (i) with r, rplated by the

 of the have ribrle.

When the hase eirele is a sperial direle the eomples is a alled at

$$
1_{1}^{2}+\pi_{3}^{\prime 2}+1_{3}^{2}+u_{4}^{2}=0 .
$$

$$
\begin{array}{ll}
1_{1} "_{1}+"_{2} "_{2}+"_{1} "_{i}+"_{i} "_{i} & 11 \\
l_{1} "_{1}+1_{2} "_{2}+1_{1} 1_{3}+b_{i} "_{1} & 11
\end{array}
$$

To prose this, note that the eomerneme embists of all wire

$$
\sum\left(n_{1}+\lambda_{1}\right) \omega_{1} n_{0}
$$

$$
(\sim)
$$

and is defined hy any twomplexes of this peneil. But the peanil
 satiofy the ertutation

$$
\left(1_{1}+\lambda l_{1}\right)^{2}+\left(1_{2}+\lambda t_{2}\right)^{2}+\left(n_{1}+\lambda l_{1}\right)^{2}+\left(1_{1}+\lambda l_{4}\right)^{2}-11 \quad \text { (!1) }
$$

 a fermil of aireles.

 direle. They anondingly fom a pencil of taternt areles.
75. The quadratic circle complex. The equation

$$
\begin{equation*}
\Sigma{ }_{1}\left\|_{2}\right\|_{k}=0 \quad\left(\left\|_{1}=\right\|_{1}\right) \tag{1}
\end{equation*}
$$

defines a qualmatie cirele mamplex.

$$
\underline{L}^{\prime \prime} n^{\prime \prime} ; \quad 11 \text {. }
$$

Equation (:3) will be satistion by all values of $w_{\text {a }}$ when e_{i} satisfies the equations:

$$
\begin{align*}
& "_{11} "_{1}+"_{12} "_{2}+n_{13} "_{3}+u_{14} "_{4}=1 I_{1} \\
& "_{12} "_{1}+"_{22} "_{2}+"_{23} "_{3}+"_{21} "_{1}=1{ }^{2} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& "_{14} "_{1}+"_{24} "_{2}+"_{64} "_{3}+"_{44}{ }_{4}=1 \text {, }
\end{aligned}
$$

and any ${ }^{n}$, whirh satisfy these equations will akse satisfy (1) and hereme he the eneirelinates of at eirele of the complex. Therefore

 with the cormples.

Such a cirelde is called a domble cirele of the complex. I domble circle does mon always exist in a given complex, howerer, for the nenessary and sufficient combition that "quations (t) shombl hase a sulution is that the determinant of the coeflicements shent vamish. A complex that comtains a thouble eirele is called at simplater complex.

If in equatiom(-2) c_{i} is the domble eirele of a singular complex and π_{i} any ohere cirele of the complex, the equation is idantically satistied. Hence we have the following theorem:

Wre shall now preeced to find the lorens of the centers of the

$$
\begin{equation*}
u_{i}^{2}+u_{i}^{2}+\mu_{i}^{2}+u_{i}^{3}=0 . \tag{i}
\end{equation*}
$$

The efore remedinates are alse (theorem I. Ş it) the peint coürdinates of the cepters of the seremal eireles. Thes mentinates defime a me-limensimal extemt. Therefore the lows of the whters

 ahos satiofy the "quation

$$
\begin{equation*}
\underline{{ }_{2}} n_{i} n_{i}+\lambda\left(n_{i}^{2}+n_{i}+n_{i}^{2}+n_{i}^{2}\right)=0 \tag{}
\end{equation*}
$$

for all vahes of λ, aml any ephation of the fom (ti) maty replan (1) in the definition of the lowtis sumbth. Rat ammer the emm-
 formepomeling to the values of λ detined he the equation

IIener wr hase the following theorem:

 satiofy a limear equation

$$
c_{1}^{\prime \prime} \prime_{1}+r_{2} \prime_{2}^{\prime}+{ }_{2} \prime_{1}+r_{1} \prime_{1}=0 .
$$

 fonla, which we shall ald l.

 all prints of the erelie (an be whtamed in this wats, since at pime

Nuw hat l_{1}^{\prime} apmoll I^{\prime} as a limit. The points A and I^{\prime} approach
 St the same time A aml i' approtels as limits the centers of the frimt airges in the pencil of areles defined by 1 and the tangent (1) the ennic I: Herne we have the following theorem:
VI. A

This thereation of the eyelic can in gelleral be made in fome ways, since as whe havern the erelie san be whtaned from the
 heen exhanstively stulterl both with the use of cartesian eoriorli-
 disension of their propertios wouth require tow much space for this brok.

EXERCISES

 - Tambard forma.

76. Higher circle coördinates. In ahlition th thr fom quantitin

 eynation

$$
\eta(11)+\pi=11
$$

of whirh (1) is a sperial eater. Wremay alon, if we wish, replace

 a mope qemeral quantratio equations, su that we maty sily the hight is

$$
\xi(11)=\sum{ }^{\prime \prime}\left\|_{1}\right\|_{k}=11 .
$$

We shall eontimme to wie the orthemal form for simpleity of treatment.
 saty and sulkeme comblition that the direle should he semetal. In this case the direlt is exmpletely detemmet by the form eximedi-

 elementary sems. The absolate value of "s is then deremimed. bat its sigh is mot fixed.

 monathered as bombliner that pertion of the phate whith lies on the

 that is. if wr intronluce ('artesian coürlinates so that
$\rho \cdot r_{1}-r^{2}+!r^{2} \quad$ 1. $\quad \rho \cdot r_{2}=2, \quad \rho \cdot x_{3}=2!, \quad \rho x_{4}=-i\left(r^{2}+y^{2}+1\right)$, it in caty to comprate that the rathas of the eirele $"$, is equal to
 $u_{1}-i u_{4}$ of the radias. We may agree that the sign of the ratios is to be consintered peritive when the conter of the arede lies in the area beumber by the eirele and that the sign of the radius is to be taken as mative when the center lies in the part of the plane not bommed by the airele.

The ancre betwern two eireles $n_{\text {a }}$ and r, is now defined without ambinuity hy the formula

$$
\begin{gather*}
\cos \theta=-u_{1} r_{1}+u_{2} r_{2}+u_{3} r_{3}+u_{4} r_{4} \\
u_{3} r_{5} \tag{2}\\
u_{1} r_{1}+u_{2} r_{2}+u_{3} r_{3}+u_{4} r_{4}+u_{5} r_{3} \cos \theta=0 .
\end{gather*}
$$

To dhange the sign of z_{i} but not of r_{j} is to dhange the angle θ intw its smplementary angle.

If the cireles ${ }^{\prime}$, and r_{i} are real and the corimbinates are those of Stit. it is not difitult to sere that the amgle θ is the angle between the two momats dawn earh into the rewion of the plane which call rirele bumats.

If either of the two cireles is perebal, θ is rither intinite or in-

 (an $\theta={ }_{0}^{10}$ When hla menter of r_{t} lies on "/. Hence we maty say:

 ant -nftionellt comblitun for this is

$$
{ }_{1} r_{1}+n_{2} n_{2}+1 r_{i}+n_{1} r_{1} 11 .
$$

 ".andition for this is

When they are tangent in the rementary semse and the intering of ore lix in the interion of the other.
('omsibler the equation
 if wephame

$$
u_{1}=r_{1}, \quad u_{2}=r_{2} . \quad \quad \quad \quad=r_{3}, \quad \quad_{4}=r_{4}, \quad r_{3}=r_{3} \cdot \operatorname{ris} \theta,
$$

twiether with the comdition

$$
r_{1}^{2}+r_{2}^{2}+r_{4}^{2}+r_{3}^{2}=0 .
$$

 "fitiol ametle.

If ", "t the higher virele comphex beomes the elementary com-

$$
u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}+u_{5}^{2}=0 .
$$

In that abie $\theta=0$ and the equation mat be identilied with (t).

TWい - immltantoms egnations

$$
\begin{aligned}
& b_{1} "_{1}+l_{2} n_{2}+b_{3} \prime_{3}+l_{1} \prime_{4}+b_{5} n_{5}=-11
\end{aligned}
$$

$$
\underline{\Delta}\left(m_{1}+\lambda k_{2}\right) \mu_{1}=0_{1}
$$

EXERCISES

('HAPTER XII

POINT AND PLANE COORDINATES

77. Cartesian point coördinates. Let (IN, (1), (1Z (Fig. 末1) he

 l I ate the perpentionate the there phame detemmined hy the axts, the homblis of thex perpmelionlats with a proper anmontion at the sighs are the rotangalar (artexian coindinates of I. That is, wry hate

$$
r=. H I . \quad \|=I P . \quad z=N /, \quad(1)
$$

where $1 / I^{\prime}$. $1 . l^{\prime}$, amd ${ }^{\prime} /{ }^{\prime}$ are positive if meanment in the directions ()S, (1 , and

Fı. 51

The coüdinates may be made homogeneons hy phating

$$
M H=\frac{r}{t} \quad L P=\frac{!}{t}, \quad M=\frac{z}{t}
$$

 whe hy the following emmontions: (1) the ratios $11: 0: 11: 9$ ame

 imblimitely fram 1 .

 14
the two kinds sible bs sile pasing from whe the wher an - monseniente diatates.

 ratse of rectangular erointlinato.

Throughout this bem the axes will be asommed as revtanglat

$$
I_{1} I_{2}^{\prime}=1\left(r_{2}-r_{1}\right)^{2}+\left(I_{2}-l_{1}\right)^{2}+\left(r_{2}-r_{1}\right)^{2}
$$

 finits.

 the ra, (1)litions
\qquad
 f"uint anet at intimit!! is imhtot, mimut.

If in whation (\because) we replace the wördinates of f by those of a

 we whtaill $\quad\left(. r-r_{n}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{1}\right)^{2}=r^{2}$.
which defines the levels of a perint at a comstant distane from a tixed puim. This lown is by definition asplere.

Equation (\because) maty be writen in the form

$$
\left.A\left(r^{2}+y^{2}+z^{2}\right)+1 ;, t+(y t+1) z t+1: t^{2}-\cdots\right) .
$$

"1.4.

$$
\left.r_{n}: y_{n}: z_{n}: t_{n}=1 ;:(: 1):-2.1 . \quad r^{2}=\frac{B^{2}+r^{2}+1 f^{2}-4 . A E}{4 . f^{2}} \quad \text { (}\right)
$$

If the conter f and the radins r are finite, the coeflicient A is mot zero. ('mbersely, any equation of the form (i) in which 1 is not 2uro defines a shere the radins and the eremer of whin are given by (7). More emematly it is pesible to define at sphere as the
 at intinity, the radins is infinte or indeteminates, and the egratinn split: intu the two equatons $t=0$ and $13 \cdot+(y+I z+E t=0$. There cases of the sphere will he disernsed in detail ins 118 . In the fresent sertion we shall comsiter only the "ase in which $.1 \pm 0$ and the ophere conforms mere nearly to the elementary detinition, and its equatom may then be put in the form (5).

The ranlins. howewry may be real, maginary or zero. If the ratlus is zero, the equation takes the fom

$$
\left.\left(. r-r_{n}\right)^{2}+\left(.4-y_{1}\right)^{2}+\left(z-z_{n}\right)^{\prime 2}=0\right) .
$$

It is (h) ions that if $\left(\%_{n}, y_{,}, z_{n}\right)$ is a real print. "ymation (S) is satiatied by the ä̈rtinates of men other ral print. There exist, howerers a dombly intinite set of imaginary points whim satisfy

79. The straight line. I stminh line is he detinition the onedimmanmal extent of fuint. Whas counthates satisfy eqmations of t l. finin

$$
\begin{align*}
& \text { p.r } \quad r_{1}+\lambda r_{2} \\
& \beta!!\quad!t_{1}+\lambda!!, \tag{1}\\
& \mu z_{i}+\lambda z_{i} . \\
& \mu^{\prime} t_{1}+\lambda t_{1},
\end{align*}
$$

Where $\left(r_{1}: y_{1}: z_{1}: t_{1}\right)$ and $\left(r_{2}: y_{2}: z_{2}: t_{2}\right)$ ane the eroindinates of 1 wo fixal primts and λ is: a variable patameter.

Fronn the dedinition wr may haw the following comelasions:

 patt hat I_{1}^{\prime} be a point on the lime (1) determined by $\lambda \lambda_{1}$ and het I_{2}^{\prime} be amother point on the lime dewomined by λ - $\lambda_{\ddot{Z}}$. lat σ h. a phamtity defmed be the relation $\frac{\lambda_{1}+\sigma \lambda_{3}}{1+\sigma}=\lambda$. 'Thent the time "gutation in (1) mat be watten
(1)

$$
\begin{aligned}
& \rho \cdot r=\frac{r_{1}+\lambda_{1} r_{2}+\sigma\left(r_{1}+\lambda_{1} r_{2}\right)}{1+\sigma} \\
& \tau \cdot r=r_{1}+\lambda_{1} r_{2}+\sigma\left(r_{1}+\lambda_{2} r_{2}\right)
\end{aligned}
$$

and smilar equations can be fomed for y, z, and t. lint these ate
 thas shown to be idential to that detmed by $\left(x_{1}: y_{1}: r_{1}: t_{1}\right)$ and $\left(r_{2}: \eta_{2}: z_{2}: t_{2}\right)$.
 , "licrl!! at intinit!!
li, in aprations (1), $t_{1}=0$ aml $t_{0}=0$, thent $t=0$ for all valles of λ. () harwise $t=0$) onfy when $\lambda=-t_{1}$. Which determines on the lint the sincrle primt at intmity $\left(x_{1} t_{2}-r_{2}^{\prime}: y_{1} t_{2}-y_{2} t_{1} z_{2}-z_{1} t_{1}: 0\right)$. This
 times called improper struight limes other limes ate cathed proptr straight limes.
 intimit! !f real puints.

 th unity in mplatins (1) and write the mplatims of the lime in 1/1. fomm

$$
\begin{array}{ccccccc}
r & r & ! & !1 & \vdots & \because & (\because) \\
r & r & 11 & 11 & \pi & \because & (\because)
\end{array}
$$

From this and equations (1), sis, it is mot diffenlt to show that the real penints of a real proper line form astraight line in the chementary remse.
 real luint.

To prove this it is only neeessary to give an example of eath kime. The lime detined by the two points ($1: 1: 1: 1$) and ($1: 0: i: 1$) contains the tirst point and no other real point, while the line detined hy ($1: i: i: 1$) and ($1: 0: i: 1$) contains no real point. These statements may be verified by nsing the given points in equations (1) amb examining the values of λ necessary to give a reat pront on the line.

An imaginary line which contans no real print may be called rompletel! imetyinar!, one with a single real proint incompletely ime!yinuli:\%.
V. If the distance betueen tero perints on at straight lime is zero, the distrmet beteren any other tu" proints "! the line is zero.

To prove this we may use the courdinates of the points between which the distance is zero for the fixed points in equation (1). Thens, if I_{1}^{\prime} and I_{2}^{\prime} are two pemints determined by $\lambda=\lambda_{1}$ ant $\lambda=\lambda_{2}$ replectively, we may compute the distance $I_{1}^{\prime 2}$ hy formala (i), STE. There results
$I_{1}^{\prime} I_{2}^{\prime 2}=\begin{gathered}\left(\lambda_{2}-\lambda_{1}\right)^{2} \\ \left(t_{1}+\lambda_{1} t_{2}\right)^{2}\left(t_{1}+\lambda_{2} t_{2}\right)^{2}\end{gathered}\left[\left(r_{2} t_{1}-r_{1} t_{2}\right)^{2}+\left(!y_{2} t_{1}-y_{1} t_{2}\right)^{2}+\left(z_{2}^{\prime} t_{1}-z_{1} t_{2}\right)^{2}\right]=0$.
A staight line with the above preperty is called at mimimum lint. Suet hose have abreaty been met in the phate geome try. ('onerenins the minimm lines in prae we hase the following theorems:
VI. I minimum line merts the plan" at infinity in the cirele at intinit!, amb, rennerwly, an!y lime met at intimity which interserts the -irele ot infinit! is a mimimum lint.

From the fromi of theorem II the meresiary ant sumberent condition that a line now the virele at infinity is

$$
\left.\left(r_{1}^{t}-r_{1}^{t}\right)^{2}+\left(y_{2}^{t}-y_{1}^{t}\right)^{2}+\left(z_{2}^{t}-z_{1} t_{2}\right)^{2}-1\right) .
$$

 which is also "trient sphtot.

Any peint in mate maty be juined th the permes of the corele at intinity. We hatee then atherlimensinnal extent of lines thengh

 minimum lime though it, the erimdinates of (r: ! ! : : t) will satisfy the erpation

$$
\left(x t_{0}-r_{0}\right)^{2}+\left(4 t_{11}-!!_{1} t\right)^{2}+\left(a t-z_{1,}\right)^{-2}-11 . \quad \text { (:i) }
$$

Equation (\because) is, lowerer, the rynationt of atimt spere in
 the print -pherr.
 of peints whene coundinates satisty an aphation of the form

$$
\begin{equation*}
1 r+13 y+1 z+1 n=0 . \tag{1}
\end{equation*}
$$

From the definition we dedure the following propsitions:
 - wticlely on the plater.

This follows immerliately from the late that if $\left(r_{1}:!_{1}: r_{1}: t_{1}\right)$ amb
 Hose almo.
 *ither stimi, hlit lime.

$$
\begin{align*}
& 1 r_{1}+1: n_{1}+\left(\ddot{z}_{1}+1 H_{1}-0 .\right. \\
& 1 r_{2}+1 n_{2}+1 m_{2}+1 n_{2}=-0, \\
& 1 . r+1: y_{3}+\left(r_{3}+1 H_{3}=0 .\right.
\end{align*}
$$

matese there reint relatmone of the form

$$
\begin{aligned}
& \lambda_{1} r_{1}+\lambda_{2} r_{2}+\lambda_{13} r_{3}=n^{1} \\
& \lambda_{1} H_{1}+\lambda_{11}+\lambda_{n}=10_{1} \\
& \lambda_{1} n_{1}+\lambda_{2} z_{2}+\lambda_{3} \because_{n} \quad{ }^{\prime} \text {. } \\
& \lambda_{1}+\lambda_{1}+\lambda 111 \text { : }
\end{aligned}
$$

It follows from theorems I and II that any plame in the elementary sense may he represemted ly an equation in the form (1). The ermeral detinition of a plane extends the concept of the plane in the usual way.
III. I'sints at intinity lie in a phane called the plane 'et infinity.

This is a result of the definition, since the eqnation of peints at intinity is $t-10$.

On the phane $r=0$ the woïrdinates $!: z: t$ are hemogeneons (aïrdinates of the tye of $\leqslant 18$. Similarly, on the plane $y=0 \mathrm{we}$ have the (amtesian coiordinates $r: z: t$ and on the phate $z=0$ the ('artesian coïrtinates $r: y: t$. (on the plame $t=11$ we may define $r: y: z$ as trilinear coniondinates of the type in $\stackrel{s}{\circ}-2$.
IV. If there peints of 'a phane are real, the planer romtains a demll!!

From equations (2) the values of $1.1, A^{\prime}$, and $/ 1$ are real if the woirdinates of the points insolsed are real. Then in equations (1) real values may be assumed for two of the ratins $r: y: z: t$, and the third is detomined as real.

Such aphane is called a real fleme although it comains, of comsene, ant intinity of inaginary points.
V. Atwy the, distinet plemes intersert in astraight line. and any straight line imay her define as the interseretion of twen phenes.

Cimsider the two planes

$$
\begin{aligned}
& A_{1} r+l_{1} 4+r_{2} z+I_{1} t=11 \\
& A_{2} r+r_{2} 4+r_{2} z+I_{2} t=11
\end{aligned}
$$

These cumations are satistiel ly an infinite momber of values of the mindinates. Let (. $r_{1}: y_{1}: z_{1}: t_{1}$) and ($r_{2}: y_{2}: z_{2}: t_{2}$) h_{n} two surt valus. Thell the values $\left(r_{1}+\lambda_{r_{2}}: y_{1}+\lambda y_{2}: z_{1}+\lambda z_{2}: t_{1}+\lambda t_{2}\right)$ ahon satiff the two mbations so that the two phame have certainly a line in common. They camm have in commen any fuint mot on this lise if the twoplates ate distimet, sine there fumte completely

 On at aival line and a third peint mot on the lime and two sum flate will detemine the line.
VI. Any pleme errept the plame at intivity rantains a simale lime at
 are' parall.I.

The lirst part of this theorem is a comellary of theorem V. The
 with the flomentary detinition sinere by theorem V, pamallel phanes in this sense hate no finte peint in eommons.

 its equation romplex, we may write the explations at

$$
\left.\left(r_{1}+i r_{2}\right) \cdot r+\left(\beta_{1}+i \beta_{2}\right)!!+\left(\gamma_{1}+i \gamma_{2}\right) z+\left(\delta_{1}+i \delta_{2}\right) t \quad 1\right) .
$$

 when

$$
\begin{aligned}
& { }_{1} r+\beta_{1} \prime+\gamma_{1} z+\delta_{1} t=0 \\
& { }_{r_{2}} r+\beta_{2} y+\gamma_{2} z+\delta_{2} t=11:
\end{aligned}
$$

that is. when (.r:y:z:t) lie on a real staight line (theorem V'). That the line is real follows from theorem IIl, Ş? sinee the abose equations are evilently satistied by tworal pants.

The real line on an imaginary plane mas lie at intinty lat that ase the phate is said to be imm!imar! at highere weter. If the real lime is met at intinity, the plame is satil th he immpimary "t luiror mit, r.

Comsider the interseetion of the plame

$$
1 r+1!!+(\because+1 H=0 \quad(\because)
$$

and the rphere

$$
1\left(r^{2}+y^{2}+z^{2}\right)+11 x+\cdots!+1 z+1+0 .
$$

 Whe introxetion of (\because) amd

$$
\begin{aligned}
\prime\left(1 \prime^{2}+!\prime^{2}+z^{2}\right)+(1+\lambda 1) x+(1+\lambda l i)! & +(1)+\lambda()= \\
& +(1+\lambda l) 1) \quad \text { (} 11)
\end{aligned}
$$

$$
\left\{(1+\lambda .1):(1+\lambda / i):\left(11+\lambda^{\prime}\right):-\ddot{\prime}, 1\right.
$$

$$
11+1 ;+11 \quad \because 111:\left(1^{2}+1 ;+1\right) 11 .
$$

The prints of the intersection of (:3) and (t) are therefore shown th lio at a remstamt distance from a fixed point of the plame and home the intersection satisties the usual definition of the wirele.
 the comtition

$$
1^{2}+1^{2}+1^{12}=0 .
$$

This happens for the plane at infinty and for other planes called mini,num flones. In these two cases the truth of theorem Vlll is mamained by taking it as the definition of a direle. This justities the exprescion "eirele at intmity." which we have already used, amb shows that there is no other circle at infinity. The case of a minimm plame needs further disensiom.

The plane (:) imersects the plame at intinity in the line $1 . r+b y+r z=0, t=0$ and this line interse the the cirele at intinity in two fuints maless $I^{2}+l^{2}+r^{\prime 2}=0$, when it is tampent to that cirele. In the latter case the plane is by detintion a minmumplane.

It is case th see that in a plame which is mot a minmon plane its intersertions whathe eirele at intinty have all the peremertios of

 thererm follow from theorem VI. ST 79.

The minimun phanes are fumdamentally different from other

 many fernlimitise, sone of which will be mentional in the mext surtion.
81. Direction and angle. Wr, detine the divetion of at staight line as the coïrtinates of the peint in wheh it ments the plane at manity. This detinition is justition by the facte that the limes

Wre shatl demote the direction of a line by the ration $l:{ }^{\prime \prime}$: 1 . Then we have, hy theoren |l. Ş 79.

$$
l: \prime \prime: \prime \prime=r_{2} t_{1}-r_{1}^{t_{2}}: \mu_{2} t_{1}-y_{1}^{t_{2}}: z_{2} t_{1}-z_{1} t_{2}
$$

where $\left(r_{1}: y_{1}: z_{1}: t_{1}\right)$ and ($r_{2}: y_{2}: z_{2}: t_{2}$) are the eorimbinates of any two prints of the line. If meither of these prents is at infmity. We may write

$$
I: m: \|: r_{2}-r_{1}:!_{2}-!_{1}: z_{2}-z_{1}
$$

Which is in acenoranee with the more elementary detmition of direction.

From the detinition we have the following conseguthere:

surt limes lie in the phane determined ber their emmonen print at infmity and two distinct puints one on "ach line (theorem Il, ş st), and they an intersed at mo point exeept har eommon print at infmity. Theme they are parathel.
 minimm, line is that its dieretion shemld satixty the andition

$$
r^{2}+m^{2}+n^{2}=11 .
$$

This follows from (\because) , 冬 7 !
Insty we have defined the angle between two intersed ther lines I_{1} and I he the erpation

$$
\phi \quad \underset{-}{i} l_{1} \underline{\sim}\left(l_{1} \cdot m_{1} m_{2}\right)
$$

 section of l_{1} ant l_{2} ant in theif phathe. Wr shall eontime th hat this reftaitions.

$$
\phi=\stackrel{i}{\because} \ln \left(l_{1} l_{n}, H_{1} y_{\because}\right)
$$

The (ross ratio ($L_{1} L_{2}, H_{1} H_{2}$) is mity when and only when M_{1}

 I_{1} and $l_{\text {a }}$ ate fatallel: in the latter case ther lie in the same minimm plate. Hence folloms the theorem:

 that their direotions are $A_{1}: J_{1}: f_{1}^{\prime}$ and $A_{2}: f_{2}: 1_{2}$ respertively. Thent. as in (t) , S. 4!

From this we whtain the following result:
 their lirertions satist!! the ratilition

$$
I_{1} I_{2}+l_{1} I_{2}+r_{1} I_{2}=0 .
$$

Interpreted on the phane at infinity this means that the two

 diemlar t"e erer:! lime in ther plath.
'The phane mentioned mots the phane at intinty in the lime $1 . r+l i y+1 z=0$. and any line with the directinn $1: P: r^{\prime}$ mets the fane at intimity in the perint ($1: 5:\left({ }^{\prime}\right)$, which is the perle of the

 latter is tancent th the eirele at intinite. This proses the theorem.

 lishes tha following theorem:

 courdinates the anglas os, $\%$ where

$$
\begin{aligned}
& r=r_{1}+r \cdots n \\
& !=n_{1}+r \cdot m, \\
& z=z_{1}+r \cdot r,
\end{aligned}
$$

 - patations do mot hold for a minimmon line.

EXERCISES

 formod of real plates havine a real lime ats and.
2. Show that the "pration of any imaginary pane of haw melur
 is momples.

 hat mot on the sathe - trataht lime.

8. If the angle betwern two phates is the angle between their momak, show that t wo momimimum phans make a zevo angle when they are parablel or interest in a minimmen line.
9. Shaw that any minimm flane makes an influite angle with any

10. Show that lar comblinates of a pint on the cirele at intinity
 pameter. Jhmer show hat the eguations of a minimum line may be written

$$
\begin{aligned}
& r=r_{1}+1-r^{2} r \\
& !=r_{1}+i\left(1+s^{2}\right) r, \\
& \because=r_{1}+\because r .
\end{aligned}
$$

wheres is fixed for the line and r is variable.
11. Show that the equations

$$
\begin{aligned}
& r=\int\left(1-s^{2}\right) F(s) d s \\
& \because=\int i\left(1+s^{2}, F(s) d s\right. \\
& \because=\int \because r^{\prime}(s) d s
\end{aligned}
$$

 the tancent linn at any print is a miniman line.
12. Show that a minmmon phane themsh the renter of a sphere interonts the latter in two minimm lines intersectine at intinits.
13. If a line is defined by the two matations

$$
\begin{aligned}
& 1_{1} r+H_{1} \prime+r_{1} r_{1}+H_{1}=0 \\
& 1_{2} r+b_{2} \prime+r_{2} r+H_{2} t=0 .
\end{aligned}
$$

 She the lemotho of the pertembiontars from any pumt I' the then

$$
u_{1}: r_{2}: r_{2}^{\prime}: r_{+} \quad l_{2} l^{\prime}: l_{2} l_{2}^{\prime}: k_{i} l^{\prime}: l_{i} l_{4}
$$

are the mimelimates of the pmint l.

 any puint in a definite platr droment
 arimlinates of any print on a detimit.
 part of the mairslinates of any frint on a
 mat on this lime. ('all this lime $/$. The
 any Puint on a definite plate thromath

 Whtine a lmint at intinity.

liefering th the tigure we nute that $x_{1}=0$ on the plane $A B C^{\prime}$: $x_{z}=0$ on the plane A/FI): $x_{3}=0$ on the plane $A / C^{\prime}:$ and $x_{4}=0$ on the plame IPl:

The perint 11 has the miordinates $0: 0: 0: 1$, the point f the comerlinates $0: 0: 1: 0$, the pmint \quad the enoirdinates $0: 1: 0: 0$, the pint l the (amiminates $1: 0: 0: 0$. The ratios $k_{1}: k_{2}: k_{3}: k_{4}$ are A-turmined be the pesition of the perint I, for whe the coürelinates are $1: 1: 1: 1$, ame this peint an be taken at pleasure.
 (fall or limiting case in which the plane $x_{+}=0$ is taken as the phane at intinty. For if the plane br'I) reodes indefinitely from A, and
 lengeth. but e_{+}wan be mande to approath zeren at the same time amd
 AFI) and .f'l) are muthally orthogomal and $k_{1}=k_{2}=k_{3}=1$, the merimates are rectangular ('artesian cö̈rdinates.
 we may phate $k_{1}=$ cos $_{2}$. Where a_{1} is the angle betwen $A l$ and the phane 1 '/ $\%$ and take similar values for k_{2} amd k_{0}. We then have ohligue Cortesian märslinates.
 sary to suerify the couiredinates of a print at intinity. In fact, surh peints are mot the consilered as essemtially different from other pmints. Distance and all metrical froperties of tigures are mot anmenienty expresid in toms of ghandriphan aniordinates and

 nates ler simply interpeting whe of the wiordinate plames as the plate at intinity.

$$
\begin{align*}
& \rho \cdot r_{1}=!_{1}+\lambda z_{1} \\
& \rho \cdot r_{2}=!_{2}+\lambda z_{2} . \tag{1}\\
& \rho \cdot r_{3}=!_{4}+\lambda z_{4} . \\
& \rho \cdot r_{4}=!_{4}+\lambda z_{4} .
\end{align*}
$$

This is the defintiton of at staight line for imathaty pronts. If,
 valume of λ atre rat points which lie on at real statight line in the elementary sense. This is casily veritien he the statent in oneng a comstration and arsmment smikar th hat nsed in $5: 3$ for the statight line in the plante.

$$
u_{1} r_{1}+n_{3} r_{2}+u_{13}+r_{4} u_{4} \quad 1
$$

repritarits a phant.
This is the detmition of a plame. If \because amd $\begin{aligned} \text { ane any two peint. }\end{aligned}$

 Which jomas any two points wf alate lies cutirely in the phate. Henme, if the phane centains real points it mineides with a phane in the chementay semse.
 "ull! ther plothe.
 repation of the plane is

 witter"

$$
\begin{align*}
& \mu \cdot r_{1} \quad H_{1}+\lambda \ddot{i}_{1}+\mu t_{1} . \\
& \mu_{1}^{\prime} \quad \mu_{2}+\lambda \ddot{u}_{2}+\mu_{2} . \tag{1}\\
& \rho^{\prime}, \quad, \quad,+\lambda \theta_{i}+\mu t \text {. } \\
& \rho r_{1} \quad \|_{i}+\lambda y_{i}+\mu_{1} .
\end{align*}
$$

This follow- immediately fom the fime that the rlmanation of

V. In!! thon distinat phenes intersect in astraight lime.

The proof is the same ath that of theorem V, ş therefore be detimed by two simultameons equations of the form

$$
\begin{aligned}
& a_{1} r_{1}+l_{2} x_{2}+a_{3} r_{3}+a_{4} r_{4}=0, \\
& b_{1} r_{1}+l_{2} r_{2}+b_{3} r_{3}+l_{4} r_{4}=0 .
\end{aligned}
$$

VI. It $t^{\prime} \sum{ }_{n i} x_{i}=0$ and $\sum b_{i} x_{i}=0$ wre the equetions of aney turo pilums. the"

$$
\Sigma u_{i} x_{i}+\lambda \Sigma b_{i} c_{i}=0
$$

 the pumeil me!y lie whtuine el.
 " pinint.

To prove this comsider the three equations

$$
\begin{aligned}
& u_{1} r_{1}+u_{12} r_{2}+n_{4} r_{3}+n_{4} r_{4}=0, \\
& u_{1} r_{1}+b_{1} r_{2}+b_{3} r_{3}+l_{1} r_{4}=0, \\
& r_{1} r_{1}+r_{2} r_{2}+r_{3} r_{3}+r_{4} r_{4}=0 .
\end{aligned}
$$

These have the mitgue solution
males the detemanames insolvel are all zero. But in the latter (ane there mast exist maltiphers λ, μ, ρ sumb that

$$
\rho_{\prime_{1}^{\prime}}=\lambda \mu_{i}+\mu l_{i},
$$

amd hemer the there phates belong to the same permil by theorem VI.

$$
\Sigma \dot{u}_{i} r_{i}+\lambda \sum b_{i} r_{i}+\mu \Sigma r_{i} \quad 0
$$

 "quation is

$$
\begin{equation*}
u_{1} r_{1}+\left\|_{i} r_{2}+\right\|_{i j} r_{i}+v_{4} r_{1} \quad 1 . \tag{1}
\end{equation*}
$$

 the peint x_{i} shomald be in anited f"sition: that is. that ther phatere shonk pass theongh the print of that the print shand ha wh the plate.
 meathe of those of so: :

$$
\begin{align*}
& \rho_{\prime_{1}}=-r_{1}+\lambda \prime \prime_{1} \cdot \\
& \rho_{2}^{\prime \prime}=r_{2}+\lambda \prime \prime_{2} \cdot \\
& \rho_{1}^{\prime \prime}=\prime_{1}+\lambda \prime \prime^{\prime} \cdot \\
& \rho_{1}^{\prime \prime}=r_{1}+\lambda \prime \prime_{1} .
\end{align*}
$$

The pronf is olvinns. Fiplations (\because) are the equations of a perncil of phames. Ther ate also mathed the pheme equations oft a stmethet lime, the anis of the perneit. In this methen of yeakime the straght line is thonght of atorime the phane of the

 prints of a matere.

$$
" "_{1}+11 "_{2}+"_{1} "_{i}+{ }_{1} "_{i} n \quad(\because)
$$

 platr" ": ": : ": ".
III. Threr plemes met helompin!, the the seme pemeil determine a point.

This is, of contro, the same theorem as VII, sisb, hat in phane cärdinates we pore it hy moting that three values of u_{i}, saty r_{i}. w_{1}, x_{2}, which satisfy (\because) are sutitemt to detmmine the coefterents
 by the there plations is. then,

$$
\begin{array}{cccc}
n_{1} & n_{2} & u_{3} & u_{4} \tag{4}\\
r_{1} & r_{2} & r_{3} & r_{4}=0 . \\
"_{1} & "_{2}^{\prime} & n_{3} & u_{4} \\
r_{1} & x_{2} & r_{3} & s_{4}
\end{array}
$$

$$
\rho \prime_{i}=r_{i}+\lambda \mu_{i}+\mu s_{i},
$$

The prouf is whioms. These planes form a lumile.
 matis ot phanes which puss through a straight lime.

This follows from the fact that each equation is satistied by phanes whith pass threngh a fixed puint. Simultamonsly, therefore, the equations are satistiod by plates which hatre two points in eommon, and these perints are distine if the equations are distinct. 'The phanes, therefore hate in common the line eomberting the two peints.
'The equation of a straght line ran therefore be written in plane eoomdinates as the two simnltanemis equations

$$
\begin{aligned}
& "_{1} \prime_{1}+u_{2} "_{2}+"_{i} "_{3}+u_{4} u_{4}=0_{0} \\
& l_{1} \prime_{1}+l_{: 2} \prime_{2}+l_{: 3} \prime_{3}+b_{4} \prime_{4}=0 \text {. }
\end{aligned}
$$

 l. . ti., 1 , 1 l.
 I and || 1 ,

Ther themems of this section ate flamly datistir th the theomems
 memtal dratistio ohjects:

l'mint

Pants in at pant.
Pomati in two piancs.
. 1 -tmight lime.
Points of a lathe.
Plates of a hamily.

' 1 (1)

Plames throwh a print.
Platus thrombt two puints.
A smathth lime.

Prints ut a phant.

EXERCISES

 show that its "quations in phathe conctinato. ame

$$
\begin{aligned}
& "_{1} H_{1}+"_{2} H_{2}+"_{3} "_{3}+"_{n_{2}} "_{i}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& r_{1} r_{1}+r_{3}+r_{3} r_{4}+r_{4} r_{4} 0 \\
& "_{4} r_{1}+1 r_{4}+r_{3}+r_{3}+\pi_{4} r_{4}=0 .
\end{aligned}
$$

3. Nhw that the enmblana that two limes detimed bin the phans
 thels, -hmald intersent is

$$
\begin{array}{llll}
n_{1} & "_{2} & n_{3} & 1_{4} \\
u_{1} & u_{2} & b_{3} & b_{4} \\
c_{1} & r_{2} & a_{3} & 1_{4} \\
l_{1} & l_{2} & d_{3} & d_{1}
\end{array}
$$

「"ants.

5. Show that if a plane contains two pars of conjugate imarinary prints which ate not on the same straght line the plane is real.
6. Two conjugate imatinary phanes being defined as phats such that rath romathe the eongugate imagiatry pint of any point of the other, show that the plame rourdinates of the phanes are eonjugate imaginary fanatitis, and conversels. Prove that two conjugate imaginary planes interseret in a real straght line.
85. One-dimensional extents of points. C'omsiler the equations

$$
\begin{align*}
& \rho x_{1}=f_{1}^{\prime}(t), \\
& \rho \cdot x_{2}=f_{2}^{\prime}(t), \tag{1}\\
& \rho x_{3}=f_{3}^{\prime}(t), \\
& \rho x_{4}=f_{4}^{\prime}(t),
\end{align*}
$$

where t is an independent variable and $f_{i}^{\prime}(t)$ are fonctions which are continuons and possess derivatives of at least the first two orders. We shall also assme that the ratios of the fond functions $f^{\prime}(t)$ are not intependent of t. Then, to any value of t corresponds me or more points $x_{1}: x_{2}: f_{3}: x_{4}$, and as t varies these points deseribe a one-dimensional extent of points, whieh. by definition, is a mote. It is evident that heratse of the factor ρ the form of the functions $f_{t}^{\prime}(t)$ may be varied without dhanging the curve, but there is no loss of gemerality if we assmme a definite form for $t_{i}(t)$ and take $\rho=1$.

Let y_{i} be a print P obtained by putting $t=t_{1}$ in (1), and let $(4$ be a point ohtained by putting $t=t_{1}+\Delta t$. Then the coirdinates of (are $y_{i}+\Delta y_{i}$. and the pronts P and ℓ_{ℓ} determine a straght line with the equations
$19{ }^{\circ}$

$$
\begin{align*}
& \rho \cdot r_{1}=y_{i}+\mu\left(y_{2}+\Delta y_{1}\right) \\
& \sigma \cdot r_{1}=y_{1}+\lambda \Delta y_{i} .
\end{align*}
$$

where the ratios of Δ and ano the separate values of these quant ities

 ant the line (\because) appowhes as a limit the line

$$
\rho \cdot r_{i}=y_{1}+\lambda \cdot l_{l_{1}}=f_{i}^{\prime}\left(t_{1}\right)+\lambda_{1} l_{i}^{\prime \prime}\left(t_{1}\right) . \quad(\because)
$$

 l. timit, then!urnt line.

The pernts y_{i} and $y_{0}+l y_{1}$. which suthere to fix the tangent line. are often ralled emenemtiof ferints of the curve, hat the wat meaning of this expression mast be taken trom the foremoner disemssion.

We shall now show that the thentent limes to a raree in the meigh-

 atromisht lime.

This follows in wemeral from the lact that equations (:) involve two independent variables t_{1} and λ. Fow examine the exepptenal (atse we notice that at least two of the fumetions. $f(t)$ eamot be ielentically zero if equations (1) do mot represtht a point. We
 are one-valued, and shall take $f_{8}(t)$ and $f_{t}(t)$ as the two funetions which do not samish identically. We may then place $\cdot \frac{\dot{f}_{3}^{\prime}(t)}{f_{4}^{\prime}(t)}=\tau$ and replate equations (1) by the cymivalent equations

$$
\begin{align*}
& \rho \cdot r_{1}=r_{1}(\tau), \\
& \rho \cdot r_{2}=r_{2}(\tau), \tag{4}\\
& \rho \cdot r_{:}=\tau \\
& \rho \cdot r_{4}=1,
\end{align*}
$$

Where $P_{1}(\tau)$ and $F_{2}(\tau)$ areone-valued in the neighborhood eomsidered.
The equations of the tamerent line are then

$$
\begin{aligned}
& \rho \cdot r_{1}=r_{1}^{\prime}\left(\tau_{1}\right)+\lambda I_{1}^{\prime}\left(\tau_{1}\right), \\
& \rho \cdot r_{2}=r_{2}^{\prime}\left(\tau_{1}\right)+\lambda r_{2}^{\prime \prime}\left(\tau_{1}\right), \\
& \rho \cdot r_{a}=\tau_{1}+\lambda, \\
& \rho \cdot r_{1}=1,
\end{aligned}
$$

and the peints on these lines form a wo-dimensional extemt antes

$$
\mu_{1}\left(\tau_{1}\right)+\lambda F_{1}^{\prime}\left(\tau_{1}\right)=\phi_{1}\left(\tau_{1}+\lambda\right) . \quad(i \quad 1, \because) \quad(\therefore)
$$

$$
r_{1}^{\prime}\left(\tau_{1}\right)=\phi_{1}^{\prime}\left(\tau_{1}+\lambda\right)
$$

$$
(i)
$$

$$
\because \because_{1}^{\prime \prime}\left(\tau_{1}\right)+\lambda \mu^{\prime \prime \prime}\left(\tau_{1}\right) \quad \phi_{1}^{\prime}\left(\tau_{1}+\lambda\right)
$$

Equations (t) then renture to

$$
\begin{aligned}
& \rho . r_{1}=r_{10} \tau+r_{12},
\end{aligned}
$$

$$
\begin{aligned}
& \text { p.r }=\tau \text {. } \\
& p . r_{4}=1 .
\end{aligned}
$$

! $\left.\quad \therefore t_{1}\right) \mu_{i}+y_{n_{1}}=I_{1}\left(t_{1}+\Delta t_{1} y_{1}+y_{1}+\Delta\left(y_{1}+\Delta y_{1}\right)=t_{i}\left(t_{1}+\partial \Delta t\right)\right.$.
Then the thenem of the mean.

$$
\Delta!=t_{1}^{\prime}\left(t_{1}+\Delta t\right)-t_{1}\left(t_{1}\right)=\left(t_{1}^{\prime \prime}\left(t_{1}\right)+\epsilon_{1}\right) \Delta t .
$$

ambly expmainh inm Mandmanis surte.

$$
\begin{aligned}
\Delta!\prime \prime & =\ddots_{1}\left(t_{1}+\because \Delta t\right)-!r_{1}\left(t_{1}+\Delta t\right)+t_{1}\left(t_{2}\right) \\
& =\left(t_{1}^{\prime \prime}\left(t_{1}\right)+\epsilon_{2}\right) \Delta t .
\end{aligned}
$$

 natho ", satify the timee erpmand

 terminamt it is newessaty and sulforent that t_{1} shomblatint the
 order formed from the matrix

$$
\begin{array}{llll}
f_{1}^{\prime}\left(t_{1}\right) & f^{\prime}\left(t_{1}\right) & t_{1}^{\prime}\left(t_{1}\right) & f_{t}^{\prime}\left(t_{1}\right) \\
t_{1}^{\prime \prime}\left(t_{1}\right) & t^{\prime \prime}\left(t_{1}\right) & t_{3}^{\prime \prime}\left(t_{1}\right) & t_{1}^{\prime \prime}\left(t_{1}\right)
\end{array} .
$$

 values of t_{1} whieh erive diserote fointe on the rurve at whith the wembating phane is mateterminate. 'Von examine the ehatatere of a chre for whirh the werntating plane is mombere indermimate, it is emmentent to take the eymations of the emere in the form (t). Epmations (19) then take the form

$$
\begin{array}{r}
u_{i} F_{1}(\tau)+u_{2} F_{3}(\tau)+n_{T} T+"_{1}-11 . \\
u_{1} F_{1}^{\prime}(\tau)+u_{2} F_{2}^{\prime}(\tau)+"_{3} \quad 1 . \tag{11}\\
u_{1} F_{1}^{\prime \prime \prime}(\tau)+u_{2} F_{2}^{\prime \prime}(\tau)-10 .
\end{array}
$$

and these have an imberemmater shation when and anly when

$$
r_{1}^{\prime \prime \prime}(T)=0, \quad r_{2}^{\prime \prime \prime}(T)=11 .
$$

 are romstam, it is lime of all momenaly that

$$
r_{2}^{\prime \prime \prime}(T) \quad, F_{1}^{\prime \prime \prime}(T):
$$

When"4

$$
\forall(T) \quad \because_{1} \theta_{i}(T)+\cdots T+r_{2}
$$

Laphations (t) then hemont

$$
\begin{array}{ll}
\rho \cdot r, & \ddots(T) \\
\rho, r & \ddots(T)+\cdots T+\cdots \\
\rho \cdot r & \tau \\
\rho_{1}, & 1
\end{array}
$$

and any point whose corirdinates satisfy these equations lies in the phate

$$
r_{1} r_{1}-r_{2}+r_{3} r_{3}+r_{3} r_{4}=0
$$

It is evident from the defintion that this phane is the asoulating plant at wery print of the curve and this am be verified from equat tions (11). We may areordingly make more precise the theorem

If from equations (1) the parameter t is eliminated in two wass. there results two equations of the form

$$
\begin{align*}
& f\left(r_{1}, r_{2}, r_{3}, x_{4}\right)=0, \\
& g\left(r_{1}, x_{2}, r_{3}, r_{4}\right)=0 .
\end{align*}
$$

(onversely, any equations of fom (13) may in wemembly replaced by equivalent equations of form (1).

EXERCISES

and

$$
\begin{aligned}
& \frac{V-r}{\mu, r}=\frac{r-!}{\mu!!}=\frac{\eta-z}{1!} \\
& X-r \quad Y-y \quad Z-\because \\
& d_{1} \quad \quad l_{!} \quad d z=0 . \\
& r^{2}, ~ r^{2}!1 \quad r^{2} \because
\end{aligned}
$$

(1) The rubn,

$$
x=t^{3} \cdot y=t^{2}, n=t
$$

(2) The helix,
$r=\|\cdots \ln \theta=\|=\sin \theta .:=$ l. θ.

 emmentins ot these momats.
86. Locus of an equation in point coördinates. ('msilur the equation

$$
\begin{equation*}
f^{\prime}\left(r_{1}, r_{2}, r_{3}, r_{1}\right)=1 \text {. } \tag{1}
\end{equation*}
$$

 thied determined from the equation. 'The eqpation therefore detines
 wrrtato.

 wh uriter in 1 pmints o. lise entirely un the surtiter. Ton prove this motice that at stabht line is represtented he equations of the form

$$
\rho \cdot r_{i}=y_{1}+\lambda z_{1}
$$

 tutal in (1) wive an equation of the mh wrter in λ mules (1) is sathished identically.

 surfaer. 'The prints l^{\prime} and ? determine a semat lime, the equations of whinh are

$$
\rho \cdot r_{i}=u_{i}+\lambda\left(n_{1}+\mu_{1} u_{1}\right)
$$

whith tan alow be woiten

$$
\rho r_{1}=!_{1}+\mu د!_{1} .
$$

$$
\rho \cdot l_{i} \quad!l_{i}+\mu_{1} l_{!} l_{1} .
$$

(\because,
Which is at tangent lime th the motan at the perint r.
 ! ! ! ! ! ! ! : ! !

By Enters theorem for homogeneons functions we have, since ? s.atisties entation (1).

By virthe of (t) and (i) any point r, of ($: 3$) satisfies the equation

This is the equation of a phane and its coefineients depend only

Ihenere all pronts on all tangent lines to the shrface satisfy the
 rassion whieh led to it is impessible when P is surh a peint that

$$
\begin{array}{lll}
r f \\
r!!_{1}
\end{array}=0, \quad \begin{aligned}
& r! \\
& r!
\end{aligned}=0, \quad \begin{aligned}
& r! \\
& r!!_{3}
\end{aligned}=0, \quad \begin{array}{r}
t \\
r!
\end{array}=0
$$

Points whioh satisfy these equations are ealled simpmlar pmints, and onther points are called retmlar pmints. We have. then, the followintr theorem:

Ill tanapot limes t" "surfiare at a resulare print lie in a plame wallat the tamement plame. the equation oft whirh is (i).

In the eymation (ti) the perint $y_{\text {; }}$ is called the peint of tangenere.

 in ther platre (ti). 'Then
and the rymatins of the line throush y_{i} and z, we

$$
\rho \cdot r_{1}=\|_{t}+\lambda z_{0}
$$

 are, from (+) .

$$
\begin{array}{ll}
\rho u_{2} & \ddots t \\
& \ddots
\end{array}
$$

$$
(i-1,2, \therefore 1, \quad(i)
$$

 and the equation

$$
f\left(y_{1} \cdot y_{2} \cdot!\cdot \cdot y_{1}\right) \quad 11 \quad \text { (-) }
$$

 fesillts:

1. There may be a smete erpation wif the form

$$
\phi\left(\left\|_{1} \cdot "_{2},\right\|_{;}, \|_{4}\right)=11 \quad\left(n_{1}\right.
$$

 sulved and the results substituted in (a).

Theremdition for this is that the dathhath

 cumblinatus

$$
\rho_{1} \mu_{1} \mu_{1}+\lambda \mu_{1} .
$$

$$
p \|_{1} \quad \text { ", }{ }_{1},
$$

and then valurs sumptituted in
sive

$$
\begin{aligned}
& "_{1}^{2}+\frac{n_{2}^{2}}{n_{1}}+{ }_{n}^{n_{3}^{2}}+{ }_{4}^{n_{3}^{2}}=0 .
\end{aligned}
$$

The order and dass of this surfare are both 2 , but the elase of

\because There may he two equations of the form

$$
\begin{aligned}
& \left.\phi\left(\|_{1}, "_{2,}, "_{3}, "_{4}\right)=1\right) \text {, } \\
& \left.\psi\left("_{1} \cdot " "_{2} \cdot "_{i} \cdot "_{i}\right)=0\right) .
\end{aligned}
$$

For example, comsider the sumfare

$$
r_{1}^{2}+r_{2}^{2}-r_{i}^{2}+2 r_{3} r_{4}-r_{i}^{2}=11 .
$$

$$
\begin{aligned}
& \rho H_{1}=U_{1} \text {, } \\
& \rho_{\because}^{\prime \prime}=!, \\
& \rho_{: 3}=-!H_{1}+ \\
& \rho_{1}^{\prime \prime}=!_{i}-!_{i} .
\end{aligned}
$$

The elimination of 4 , from these equations and the equation

$$
n_{1}^{2}-y_{2}^{2}-y^{2}+24!4-y_{1}^{2}=11
$$

$$
\pi_{1}^{2}+n_{2}^{2}-n^{2}=11 .
$$

\therefore There may le thene equations of the fom

$$
\begin{aligned}
& \phi\left("_{1} \cdot "_{\because}, "_{1} \cdot "_{1}\right) . "^{\prime} \\
& \psi\left(\|_{1}, "_{2}, "_{i}, "_{4}\right)=1 \text {. } \\
& \chi\left(\|_{1} \cdot "_{i} \cdot "_{1} \cdot "_{i}\right) \quad{ }^{1} .
\end{aligned}
$$

$$
\because+r+r=11
$$

The tangent phanes lawe the raimelinaters

$$
\begin{array}{ll}
\mu_{1}^{\prime \prime} & r_{1} \\
\mu_{1}^{\prime \prime} & r_{1} \\
\rho_{i}^{\prime \prime} & r_{1} \\
\rho \prime_{i} & r_{1}+r_{2}+r_{i}
\end{array}
$$

There leat 10 the erpations

$$
\begin{array}{cc}
"_{1} & "_{\because} \\
{ }_{2} & "_{0} \\
"_{1} "_{1} & 11 .
\end{array}
$$

The tangent phane are the two phates 0 and $r_{1}+r_{2}+r_{3}=0$.

EXERCISES

 "an wh when has a simsulat print at the !uint of antant of the pham.
 Whan is a emon of the moth omere

 Hathe that -

 (1:0:1):1.

 contam: whth the -mtan.
 the tanere: phate- of emble of the following surfares:

$$
\begin{aligned}
& 1 \because r_{1} r_{2}+r_{2}+r_{2}^{2}=0, \\
& \because \because r_{1} r_{1}+r_{2}+r_{4}^{2}=0, \\
& \because \because r_{1} r_{2}+r_{1}^{2}+r_{2}^{2}=0 .
\end{aligned}
$$

10. Shaw that the tament phans of a wore or a rybler form a ontedimanmonal extent.
11. If the mpation of at sufane is writhon in the monhomeneons

 wate they fom a twothmencman extent aiven ly the equations

12. One-dimensional extents of planes. ('msiller the aymations

$$
\begin{align*}
& \rho^{\prime \prime}=t_{1}^{\prime}(t), \\
& \rho^{\prime \prime}=t^{\prime}(t), \\
& \rho^{\prime \prime}=t^{\prime}(t), \\
& \rho^{\prime \prime}=t^{\prime \prime}(t) .
\end{align*}
$$

 fít) fumetmont of whirl ate (om-
 at hant the firut two moters. Wr thall alow a-chan that the gatios of
 depentmat of t The unnations then

 lint. I". the eymationt of which are

$$
\begin{aligned}
& p_{\prime \prime} \quad\left(+\mu, \prime+\nu \prime_{1}\right) \\
& \sigma_{n}-\quad+\lambda, .
\end{aligned}
$$

 of whim the equations arm

$$
\rho \prime_{1}=r_{1}+\lambda l_{1}=f_{1}\left(t_{1}\right)+\lambda\left(r_{1}^{\prime \prime}\left(t_{1}\right) .\right.
$$

 ations.t"(t) den mit remish thon is a d, tinite chatenteristio.

We shall mow prow the pannation

 that platere.

Topmen this we motion that any pum ra whinh lis- in a daranteristic satisties the two apmations

$$
\begin{align*}
& r_{1} f_{1}^{\prime}(t)+r_{4} t_{2}(t)+r_{1} t_{1}(t)+r_{0} r_{1}(t) \quad a_{0}
\end{align*}
$$

 a remalt of the form

$$
\begin{equation*}
\phi\left(r_{1} r_{3} r_{0} r_{2}\right) \quad 1 . \tag{1}
\end{equation*}
$$

 fate with the "quation (t).

$$
\phi\left(r_{1}, r_{i}\right) \text { ป } r_{i}(r),
$$

 equations (\because). Thememe

This shas that the tamert phat of th is the phame if the
 for whime has the stme value: than i, for all fumb- wh the sume

 Wher aphations

 frint L the corimbinates of which satisfy the eqnations

$$
\begin{align*}
& r_{1}{ }_{1}+r_{2} r_{2}+r_{a} r_{3}+r_{4}=0 \text {. } \\
& r_{1} l_{1}+r_{2} d_{2}+r_{3} l_{n}+r_{1} d_{4}=l_{0} \tag{6}\\
& \left.r_{1} d^{2} r_{1}+r_{2} d^{2} r_{2}+r_{i 3} d^{2} r_{3}+r_{4} d^{2} r_{4}-1\right) \text {, }
\end{align*}
$$

or, what is the same thimg. the equations

$$
\begin{align*}
& \left.r_{1} t_{i}^{\prime} t\right)+r_{2} t_{0}^{\prime}(t)+r_{3} t_{3}^{\prime}(t)+r_{4} t_{4}^{\prime}(t)-\quad 1, \\
& r_{1} t_{1}^{\prime \prime}(t)+r_{2} t_{2}^{\prime \prime}(t)+r_{2} t_{3}^{\prime \prime}(t)+r_{1} t_{1}^{\prime \prime}(t) \quad 0 . \tag{i}\\
& r_{1} t_{1}^{\prime \prime \prime}(t)+r_{2} t_{2}^{\prime \prime \prime}(t)+r_{2} t_{3}^{\prime \prime \prime}(t)+r_{4} t_{1}^{\prime \prime \prime}(t)=0 .
\end{align*}
$$

The perint L We shall all the limit point in the phaner and shall

The firet patt of the propesition follows from the fand that eqpat

 ratiating the first two emations of (7) on the hypothesin that
 there explations ($\overline{7}$), we hate

$$
\begin{equation*}
\Sigma l_{r_{i}} f_{i}(t)=11 . \quad \sum l_{i} r_{i}^{\prime \prime}(t)=0 . \tag{~}
\end{equation*}
$$

$$
\mu \cdot I_{1}=r_{i}+\lambda_{1} r_{i},
$$

 these equationts satiofy alo

 h. fi"in!! plan" ..ltat.

 write the eftations (1) in the form

$$
\begin{array}{ll}
\rho_{1}^{\prime \prime} & F_{1}(\tau) \\
\rho^{\prime \prime}= & \left.r_{1} \tau\right) \\
\rho^{\prime \prime} & \tau \cdot \\
\rho_{1}^{\prime \prime}, & 1 .
\end{array}
$$

$$
\begin{aligned}
& r_{1} r_{1}(\tau)+r_{2} F_{2}(\tau)+r_{3}+r_{+} \quad 11 \\
& r_{1} r_{1}(\tau)+r_{2} r_{2}^{\prime}(\tau)+r_{3}=11 .
\end{aligned}
$$

$$
\begin{aligned}
& r_{1} r_{1}(T)+r_{2} F_{T}\left(r_{i} T+r_{4} \quad V_{0}\right. \\
& \left.r_{1} F_{1}^{\prime \prime}(\tau)+r_{-} F^{\prime}(\tau)+r_{3}-{ }^{\prime}\right) \text { (11) } \\
& r_{1} F^{\prime \prime \prime}(\tau)+r_{2}^{\prime \prime \prime}(\tau)={ }^{\prime \prime} .
\end{aligned}
$$

$$
\begin{array}{ll}
r_{1}+r_{2}+r_{1}=1 \\
r_{1}+r_{2}+r_{1} & 11 .
\end{array} \quad(1 \ddot{)}
$$

$$
\begin{aligned}
& \mu^{\prime \prime}: \quad " T \cdot{ }^{\top} \cdot \\
& \text { p". , T. "i. } \\
& \text { f'" T. } \\
& p_{1}, 1 .
\end{aligned}
$$

axis of the pernil is the straight line (12) with wheh the eharactroxtios cuimode.

Turning mow to equations (11) we see that the last one determines $x_{1}: x_{2}$ and the others determine x_{3} and x_{1}, muless $F_{1}^{\prime \prime}(\tau)=0$ and $F_{2}^{\prime \prime \prime}(\tau)$ - 0. This is the same exeeptional case just considered. The eflations for the limit points become equations (12), so that the limit ${ }^{\text {mint }}$ in cach phane is indeterminate but lies on the axis of the pencil of planes.

Ampher exceptional case appears here also when the solutions of (11) du not involve τ. This happens when

$$
\begin{aligned}
F_{2}^{\prime \prime}(\tau) & =r_{1} r_{1}^{\prime \prime \prime}(\tau) \\
F_{2}^{\prime}(\tau) & =c_{1} F_{1}^{\prime}(\tau)+c_{2} \tau+c_{3} .
\end{aligned}
$$

Equations (11) then have the solution

$$
\begin{equation*}
x_{1}: r_{2}: x_{3}: l_{4}=c_{1}:-1: c_{2}: c_{3} . \tag{13}
\end{equation*}
$$

At the same time equations (9) are

$$
\begin{aligned}
& \rho u_{1}=F_{1}(\tau), \\
& \rho u_{2}=r_{1} F_{1}(\tau)+c_{2} \tau+c_{3}, \\
& \rho u_{3}=\tau, \\
& \rho u_{4}=1 .
\end{aligned}
$$

All plames which satisfy these cymations pass through the point (13).
The surfare of the chamateristios is in this case a come. since it is mate up of lines through a common point. The enopilal edge re⿻thenes 1 the sertex of the cone.

In sti we have shown that the tingent planes th a surfare mas. muder certain combitions, form at one-dimensional extemt of
 min stath the following thenem, whirh is in a semse the comberse of the abowe:

 ".ylimato.)

In the abose theorem the natume of the surface hate beta do.

 of a bahte of t, whith tixts a defatte phate, a definite rhatater-
 Gase the developable surfare will hase thromernat ond of the forms wan abose. Xext in simplicity wouht be the case in wheh

 the emmlitions given.

The phathes of the extellt ate satid in eath ease wetmelyp the developable sulfare
88. Locus of an equation in plane coördinates. ('msider an

$$
\begin{equation*}
f^{\prime}\left(u_{1}, u_{2}, u_{i}, u_{i}\right)=0 . \tag{1}
\end{equation*}
$$

 thes of at leat the tirst wowners. Two of the ration ${ }_{1}: "_{2}: u_{3}: "_{0}$

 fo as insseri. In this rand the extemt is natil in be of the mith whes.

We shatl mot restrid marolver homever. (1) perlymmials in the following dis

 (Fig. Sl) of the (entigumatm 小etimed hy

Now het affram mincideme with p in such a way that the
 The Jine in apmonhes a limiting line L whose equations in plane coniorlinates are

$$
\sigma u_{1}=r_{1}+\mu \cdot l_{i} .
$$

The differentials de are bomm only by the comdition

$$
\begin{equation*}
d l^{\prime}=\frac{c_{1}^{\prime}}{c_{1}} d c_{1}+\frac{c_{2}^{\prime}}{n_{2}} d c_{2}+\frac{c^{\prime}}{c_{3}} d r_{3}+\frac{c t}{c_{4}} d v_{4}=0 . \tag{2}
\end{equation*}
$$

 phanes through the point l, whose conirdinates are

$$
\begin{equation*}
x_{1}: r_{2}: r_{3}: r_{4}=\frac{c t}{c_{1}}: \frac{c t}{c c_{2}}: \frac{c t}{c r_{3}}: \frac{c t}{c c_{1}} . \tag{3}
\end{equation*}
$$

This point lies in the plane ci, since by Euler's theorem for hanagentoms functions.
which is the comdition (1), s. 4 , for mited position.
 with the phane $"_{1}: "_{0}: r_{3}: c_{4}$. Hence the lines L fom a pencil of lines through I.

The pint P is mot determined hy oqnations (: $:$) if

A phane for which the eo conditions is met is rallem a simpular plene of the extent (1). (other plan's are callent member phemes.

Whe shm up war sesults. in the following themem:

The fuint P 'maty be calle the limet foint in the plane fo.

 fim

$$
\begin{equation*}
\phi\left(x_{1}, r_{2} x_{0} x_{0}\right)=1 . \tag{it}
\end{equation*}
$$

The beus of f is then a surfare. If the extem (1) is if the m h (hass, the surfare (i) is absu cathed a surface of the mhe thas.
II. There may be two equations of the form

$$
\begin{align*}
& \phi_{1}\left(r_{1}, r_{3}, r_{3}, r_{4}\right)=11, \\
& \phi_{2}\left(r_{1}-r_{3}, r_{3}, r_{4}\right)-11 . \tag{i}
\end{align*}
$$

The landis of P is the a alme.
III. There may be the er atations comenting $r_{1}, r_{2}, r_{3} r_{4}$. The fimints P ate then diserete pains.

Wre shath man alwe that the phans of (1) ane tangent the lowns of I ' in surh a mamer that I is the point of tangeney of the phane f, in which it hes.

Tonpone this write equation (t) in the form

$$
\left.r_{1} r_{1}+r_{2} r_{2}+r_{8} r_{3}+r_{4} r_{4}=1\right)
$$

and differentiate. Wir have

$$
\sum u_{i} d v_{i}+\sum x_{i} d c_{i}=0,
$$

Whinh, he aid of (\because) and ($: 3$) is

$$
r_{1} d r_{1}+r_{2} d r_{2}+r_{3} l r_{3}+r_{4} d x_{4}=0
$$

('msider mow in order the provims caves.

1. If $r_{\text {, sutisfy a single cophation (i), we have }}$

II. If , ${ }_{i}$ antify the tan argations (7), we hatw

 of a phate of the extent. The entire extent may hate the sathe

2. Change of coördinates. A whathenten of reterelle and at ret

$$
\begin{align*}
& { }^{\prime \prime} H^{\prime}+{ }_{1} r^{r}+{ }_{n} r_{3}+{ }_{n 1} r_{4}=11 . \tag{1}
\end{align*}
$$

 famed he the fone phate (1). 'The prof rans along the same
 will aromblaty mo be given.

$$
\rho\left\|_{i}^{\prime}=\prime_{1,} \prime_{1}+{ }_{2 i}\right\|_{2}+\|_{. i} \prime_{i i}+{ }_{+i} u_{4}
$$

$$
\begin{align*}
& 11.1-11+\cdots z+11 \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \mu: \quad 1111-1,11-1+1 \tag{is}\\
& p^{\prime \prime} \quad \text { t. }
\end{align*}
$$

EXERCISES

 i1) M14....

 atal time it apuations
T. 大lum that pr fit ar or 1. a. 1

CHAPTER XIII

SURFACES OF SECOND ORDER AND OF SECOND CLASS

90. Surfaces of second order. (onsider the equation

$$
\begin{equation*}
\sum^{\prime \prime} \prime_{i, k}, r_{1} \cdot r_{k}=0, \quad\left(t_{1}=\prime_{1 k}\right) \tag{1}
\end{equation*}
$$

 Sis becomes, except for a fator 2 , the determinant
ealled the diserimimont of the equation. We may make the following preliminary elassilieation:

1. $\Delta \neq 0$. The surfare has admbly intinite se tof tamernt pathes. The pane equation of the surfate may be fomm by elimmating ${ }^{\prime \prime}$ from the equations

$$
\begin{align*}
& \rho \prime_{1}="_{11} r_{1}+"_{12} r_{2}+"_{10} r_{1}+"_{11} r_{4} \\
& \rho \prime_{2}="_{10} r_{1}+{ }^{2} r_{2}+{ }_{2,} r_{3}+{ }_{24} r_{4}, \tag{0}\\
& \rho \prime_{3}=\|_{1 ;} r_{1}+"_{n} r_{2}+"_{1} r_{3}+{ }_{n} r_{4} . \\
& \rho \prime_{4}="_{14} r_{1}+{ }_{24} r_{2}+"_{34} r_{3}+{ }_{13} r_{1}
\end{align*}
$$

$$
"_{1} r_{1}+"_{3} r_{2}+"_{i n} r_{2}+n_{4} r_{+} \| \text {. }
$$

It is mot difficult 10 show that tha disermimant of (id) is mot "gral torero.
II. $\Delta=11$. The tament planes einher form a obr-thmensinnal extent of phates or eonsiot of dismote plames. 'These caters will he -xamintel later.
91. Singular points. liy siti simglar puints on the surface (1) s! ! , are given by the eqnations

$$
\begin{align*}
& { }_{11} r_{1}+a_{12} r_{3}+"_{1, i} r_{3}+"_{14} r_{4}=0, \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& n_{14} r_{1}+"_{0,} r_{2}+"_{04} r_{3}+"_{14} r_{4}=11 .
\end{aligned}
$$

There are form rases:
I. $\Delta=0$. Equations (1) have mos shation, and the surfater has mo simernat perints. This is the gemeral rase.

 and emonseler the st maight lime

$$
\rho \cdot r=\quad!1,+\lambda \xi_{1}
$$

 equation of the suffare amp alsw the equations (1) the reath is

$$
\lambda^{2} \leq{ }_{2}, \pi=n_{1} \quad 0 . \quad(\therefore)
$$

This shows that any line thromeh a singulat peint meres the sur. fare only at that peint $(\lambda=0)$, and there with a dombly combtal

 (onditions.

 than and heme the surfare has a line of siugular prints. If this lime is taken an the line $r_{1}=11 . s_{2}=11$ in the eroirdinate sotem, what

 It hat two of the reftionemte in the last mpation camm ramish. -ince the suface has mis the line $r_{1}=0$ ant $r_{2}=0$ of simgutar paint. Therefore the lefthand member of the equation of the arr-

 gular paints. If this phate is taken as $r_{1}=0$. the entation of the

 the smilar themem of s:3t:

 (In the surtion.
 wurtit, wh, w, surh , inst.

Theses are selti-pmilar totrahtidrans.

In addition to thene thenrems we will state and prose the followings which have no commomare in s: : t:

 (themem \I) and hemer the entire line Fer. Now het be any peint on l'r. Its polat plane mast
 any juint if $/$ K. 'Therefore the jular
 the thentem. It in (whernoth that the "persite edges of a self-pular tetmhedran are comjugate pelar lines.

 aml L, interomet at $l i$. Since $l i$

 - Mrface at h.

EXERCISES

1. Nhw that any Gord dman through a fixed point l, intersecting

 is a puint sum that all chomes themerh it ate lisemed ly it. This is the arenter of the gutatit.
 "home is a plate whish is the pelar plate of the print in whiel the

 is tancent to the plane at intintit.
2. Prowe that all perints on a strajotht line whinh passes through the
 (anguate to the direetion of the lime.
3. Shew that if a hate comjusate to a siven direetion is parallel to

 sentions of there mongate diametral plames with the plane at infinity

4. Classification of surfaces of second order. W"iththe aill of the reante of the last twa sertions it is men fessilhe for whan the

 that the prlar of $11: 11: 11$ in r. 11 , that of $11: 11: 1$ in. 11 . that of $11: 1: 11: 11$ is $r_{z}=11$. amt that of $1: 11: 11: 11$ in 11 . Th.

 will he sertl later.

:1111

the comespombling equations am evilently not be redneed to each
 is made betwern reals amd imanimates, all surfaces of the three types maty be represented by the single equation

$$
\begin{equation*}
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{1}^{2}=0 \tag{玄}
\end{equation*}
$$

II. Th, antes. $\lambda=0$. hat not all the first minors are zero. The
 pint as the vertex. lat the remex he taken as $1(0): 0: 0: 1$) Then in the cymation of the surface $"_{14}="_{24}="_{34}="_{14}=0$. Take

 as ($(10: 1: 11: 0)$ any point in this phane but not on the surface. such penints exist maness the polar phane of R lies entirely on the surface. which is impossible simer f was taken as mot on the surface.

 on this line. We have now fixed the tetahedron of reforente so

 of 1:0: ": " is r_{1} 0. Therefore the equation of the surfare is

$$
{ }^{1} r_{1}^{2}+{ }_{1 \ldots 2} r_{2}^{2}+{ }_{3} r_{3}^{2}=1
$$

 of mak: mamyly:

 pollu-ible tathe fomat

$$
r_{1}^{2}=0 .
$$

 at. is ansily veritiod by the sumtent.
94. Surfaces of second order in Cartesian coördinates. A. w.

 This being dome the erental eypation of the seroml theme will be writ!n
 *ytall th 1.

 phate at inthity. There senth the eypations

$$
\begin{align*}
& 19.1+14+!2+1 t-11 . \\
& h \cdot r+b .1+t^{2}+m t-11 . \\
& 418+1!+\because+11 t-11 \text {. } \\
& 1.1+11!1+11=+.1+\rho .
\end{align*}
$$

$$
\begin{array}{llll}
& \prime \prime & l & \prime \prime \\
h & h & \vdots \\
\vdots & \vdots & \prime
\end{array}
$$

 has a cedter (that is. if there exists a perint which is the middle print of all (hmols thrman it e that peint is the phle of the phate
 by asmaning the wentor as the origin of eoumdinates and reversing the argmonent just mathe.

We have reathed the following result:

Hohling mow to the signiticanee of the determinant D ats siven
 thans of the surfare in (artesian coirmbates. There will be this differenoe fom the work of \leqslant a $9: 3$ that now the pame $t=0$ phys
 Wanes. The wher there aniselimate flaters. howevers may be
 (t) rettangular aündmatos.
 ring the surface to a seffepular tetrahedron one of whose fiteses is the plane at infinity its equation beromes

$$
11 t^{2}+1,14^{2}+1 \cdot z^{2}+1 t^{2}=0 .
$$

Acomeling th the signs of the anethetents this gives the following

1. Ther wial tylt:
(11) The imasinay ellipsum.
(b) The mal ellipmid.
(1.) The hapertmbid of two shects.

 equation of the surfiter is

$$
a x^{2}+2 h x y+1 \cdot y^{2}+\cdots f^{2}=10
$$

The tangent phate at 1 meets the phane at intinity in at line

 pane wi the wher. 'Then $h=0$, and the equation of the surfate is minnoul 10

$$
1 x^{2}+b y^{2}+11 z-11 .
$$

Arempling to the signs whith oreme we have two lype:

1. Ther wral tylit:

The elliptie paraboloid,

$$
i^{i^{2}}+\frac{i^{2}}{i^{2}}=11 z
$$

\because. Ther watdle t!y! :
'The hyperbelie farabobide

$$
\frac{i^{2}}{a^{2}}=\pi z
$$

 the if the simeruly permt is not at intinty and is a \ln limder if the singular peint is at mathity. If the surfare has at late of singular

 combtel, whish maty he the plate at intinity.
95. Surfaces of second order referred to rectangular axes. lı the

 ant ₹ $\quad 11$ atremathally omlummat.

Comsider tirst the central surfaces without singular peints for which $l=0$. The phane at intinity (ants this surface in the genemal mini-

$$
\begin{equation*}
r r^{2}+l, y y^{2}+r z^{2}+\because \cdot f^{\prime} y z+\because!!z \cdot x+\because h \cdot r y=0, \tag{1}
\end{equation*}
$$

where $r: y: z$ are homurnems wiordinates on the phane $t=0$.
When the equation of the surfae is refered to a selfepolar tet tahedron of which the phate at intinty is mad fare, the curve (1) is refered wa self-pular trimgle. If the axes in space ate onthengal, the thangle mant ako be a self-pelat triangle (themem \backslash, ss 1 , (1) the cirefe at intinity

$$
\begin{equation*}
x^{\prime 2}+y^{\prime \prime}+z^{\prime \prime}=0 . \tag{2}
\end{equation*}
$$

Our powhem, therefore, is to time on the plame at intinty a triange Which is self perar at the same time with respere to (1) and (\because).
liyst:; this tan be done when ant only whell the derves (1) and (-2) intersent in fome distinet pints or are tangent in two distinet foints or are ewincilent.

In the first wase there exists one and only one self-pular triangle rommen th (1) and (\because) , and therefore there exists mily one set of
 rie and surth that he moe of them as ceindinate phames the equation of the quadrie becomess

$$
\left.1 \cdot r^{2}+1 \cdot y^{2}+r z^{2}+1=1\right) . \quad(1=1=1=1=0)
$$

These phanes are the primeipel diemetrel phemes of the quadrie. and their intersections are the primipell ares.

In the seendel ase there are an intinite number of phates thengh the origin, surth that les use of them as coier linate plames the equation of the quadric heromes

$$
\left(1, y^{2}+y^{2}\right)+y^{2}+1=0 . \quad(1 \geq=1 \neq 0)
$$

 and to melh whes. The surface is a surface fomed by revolving

 the migin, if taken an comedinate phase rednee the equation of the

$$
11\left(r^{2}+1 y^{2}+z^{2}\right)+1=11 .
$$

amb the quatrin in a yhron.

 amt lase lha mation of 5 ! 1 . We mation time that if the anco of

 i- 1 hen fixal.

 tion of the quatrie is tadumat to the form

$$
11,1^{2}-1,1^{2} \quad 11 \therefore \quad(1, \quad 1,
$$

$$
11\left(1^{2}+!1^{2}\right) \quad 112
$$

EXERCISES

Examme the following surfares for the existeme of prime pal axes:

1. $r^{2}+y^{2}+:^{2}+r^{2}+i!z+1=0$.
2. $\left.\because r^{r}+1+i\right) y^{2}+\because^{2}+(1+i) \cdot r y=0$.
3. $r^{2}+\ddot{2} u^{2}+7 \therefore^{2}+1 i!:+1=0$.
4. $\because r^{2}+\therefore^{2}+\because i r y+1=0$.
г. $3 r^{2}+2 y^{2}+7 \therefore+3 i y=1=0$.
5. $r^{2}+\ddot{-2} \cdot \pi-y^{2}-\because^{2}+\ddot{2} \because=0$.
6. $r=+i y=r=0$.
7. $x^{2}-2 i r!+!r^{2}+2 r+2 \pi=0$.
8. Examine the fuarlios with simgular forints bey the methots of this section.
9. Rulings on surfaces of second order. Wre have sten (客 (9:) that the eqpation of amy shefite of the semme mater withemt singular points ath le witten as

$$
\begin{equation*}
r_{1}^{2}+r_{2}^{\prime 2}+r_{3}^{\prime 2}+r_{4}^{\prime 2}=0 \tag{I}
\end{equation*}
$$

 the phane at intinity and aty other phate. This equation am be writeol in ther of the two forms:

$$
\begin{align*}
& r_{1}+i r_{2} r_{3}-r_{2}=\lambda \\
& r_{1}+i r_{4} r_{1}-i_{2} \tag{3}\\
& r_{1}+i r_{2} r_{3}+i r_{1}=\mu \\
& r_{3}-i r_{1} \quad r_{1}-i r_{2}
\end{align*}
$$

Whemer follows for aly puint on the surfare

$$
\begin{equation*}
r_{1}: r_{i}: r_{1}-\lambda \mu+1: i(-\lambda \mu+1): \lambda-\mu: i(\lambda+\mu) \tag{I}
\end{equation*}
$$

From thete equations the following thentems are abily format:

 ut , , IM timmil!.

'lhis is a monlaly tor hempern II.

 i, lationt is fr゙!itutio.

The engations of phane of the first pencil are

$$
r_{1}+\lambda . r_{2}=0
$$

and thene of the serent arr

$$
r_{3}+\mu_{1} r_{4}=0 .
$$

If tha such phane intersed on the surface. we have

$$
\lambda=c_{i, ~} \mu-"_{1} \mu
$$

"Wind proses the themems.

 wid, which mentaines the then aros of the premels.

Let the two permin $l_{n} \cdot r_{1}+\lambda r_{2}=11$ and $r_{3}+\mu r_{4}=0$, where the frymentine ration is appessed ly $\lambda=\begin{gathered}a \mu+\beta \\ \gamma \mu+\delta\end{gathered}$

Then if a pant is rommen th 1 wo correqunding plances it atisties the equation

$$
\gamma_{1} r_{1} r_{3}+n \cdot r_{2} r_{3}-\delta r_{1} r_{4}-\beta \cdot r_{y} r_{3}=11 .
$$

"hich is ahar satiantied by the axe of the pumeth.

 of the surfare and let $r=0$, $r_{t}=1$ he anther wemator of the same family. Ther equation of the surfate is then

$$
{ }^{2} r_{1} r_{3}+r_{4} r_{4}+r_{4}^{r} r_{4}+\sigma_{1} r_{4} r_{4}=11
$$

$$
\begin{aligned}
& r_{1}-r_{1}+r_{r} r_{1}=\lambda . \\
& r_{2}-r_{2}+r_{1}
\end{aligned}
$$

 The mation is widmale parembe.


```
\gamma\mu - o
```


 satiofy the argation

$$
\gamma r_{1} r_{;}-\delta r_{2} r_{4}-r_{2} r_{4}-3 r_{2} r_{4}=11 .
$$

EXERCISES

 asal fur the fimare they are not.
97. Surfaces of second class. (innseler the rymanim

$$
\text { 上.1:", } n_{2}=11 \quad(.1=-1, k) \quad, 1
$$

 primt. lnathme

$$
1 n_{1}+1 n_{2}-1+1 n_{4}=11 \quad(i=1, \therefore 2 . \quad 1) \quad(3,
$$

10 w! mos phate

$$
\begin{array}{ccccc}
& 1 & 1 & 1 & 1 \tag{!}\\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
& 1 & 1 & 1 & 1
\end{array}
$$

ohtained from (1) by the help of (- -). The elimination of u_{i} then gives

$$
\begin{array}{lllll}
A_{11} & A_{12} & I_{13} & A_{14} & r_{1} \tag{玄}\\
1_{12} & A_{22} & A_{23} & A_{24} & r_{2} \\
A_{13} & I_{23} & A_{33} & A_{34} & r_{3} \\
A_{14} & A_{24} & A_{34} & A_{44} & r_{4} \\
r_{1} & r_{2} & r_{3} & r_{4} & 0
\end{array}=0,
$$

which is the equation of a surface of seemet order.
 that in this case no singrular plame exists. It is mot diflientt to show that the diswriminant of eqnation (4) does not vamish.

We have, accordingly, the following resint: A phane cotcont at
 in!a a surfitece oft seromed order uithout simpular prints.

This theorm may be otherwise expessed as follows: A sumteter
 with, ut singular puints.
 have one and only one solution, so that the extent (1) hats one and only che singular phane. Lee it be taken as the phane 0:0:0:1. Then $I_{14}=I_{24}=. I_{34}=I_{44}=0$, and equation (1) takes the form
where the determinant

Wese mot vanish owing the the hepothesis that met all the first minms of the dis. riminant (1) vanish.

The elimination of ${ }^{\prime}$, from apmations (\because) aml rquation (ii) wive. therl,

$$
\begin{array}{llll}
1_{11} & 1_{12} & 1_{1} & r_{1} \\
1_{12} & 1_{2} & 1_{3} & r_{2} \\
1_{1 ;} & i_{2} & 1_{3} & r_{3} \\
r_{1} & r_{2} & r_{3} & 11
\end{array}=1, r_{1}=11,
$$

which are the rymations of a mondernemate "whir in the phane $x_{i}=0$.

 beconlles:

 samioh.
 the phame extemt cansists af two hamelles of plates. 'The elimina-

$$
\begin{array}{llllll}
r_{11} & r_{1} & r_{:} \\
A_{10} & 1_{i n} & r_{i} & 0 & 11, & r_{i} \\
r_{1} & r_{0} & 11 & r_{i}=0,
\end{array}
$$

Which detime the revine of the two bumdles.

$$
1,11 \text { ! (~) }
$$

 thiml minmo of (f) atryorn.

98. Poles and polars. The relation betwern poles and pulars may be established he means of patme coibelimates as well as bey pom

$$
\rho \cdot r_{1}=.1_{1} r_{1}+.1_{12} r_{2}+.1_{13} r_{3}+.1_{4} r_{4} . \quad(i=1, \quad \because, i, t)
$$

 In the rases in which $\nu=0$ the polate relation is somethiner new.

The following theorems datistie to those of catily phomed:
 platio.
 "1"ipur prile.

99. Classification of surfaces of the second class. The previoni

 taken of real valum the thation of hat phan extemt maty he writtoll an

$$
1_{3}^{2}+1_{2}^{2}+1_{2}^{2}+n_{1}^{2}=11 .
$$

 the equation takes ont on atmotar of the forme

 the firm

$$
\pi_{1}^{2}-n_{z}^{z}+\pi_{i}=0 .
$$

$$
u_{1}^{2}+u_{2}^{2}-u_{0}^{2} \quad 1 .
$$

\therefore Plante lamornt to an imasinaty plane chrsu

$$
u_{1}^{*}+u_{2}^{\ddot{2}}+u_{\vdots}^{z} \quad u_{0}
$$

 (1) thr *incl| サ1"

$$
"_{1}^{1}+\|_{2} \quad 1
$$

 the dematian of real-:

1. Tworeal homble of platm

$$
\text { "i } \quad \text { " } 11 .
$$

$$
11 \quad 1111
$$

$$
11: 11
$$

(ILAPTER XIV

TRANSFORMATIONS

100. Collineations. A collineation in sate is a peint transformat tion expressed by the equations

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=\pi_{11} r_{1}+{ }_{14} r_{2}+t_{1} r_{3}+t_{14} r_{4},
\end{aligned}
$$

$$
\begin{align*}
& \rho \cdot r_{3}^{\prime}=t_{61} r_{1}+t_{32} r_{2}+t_{33} r_{3}+t_{34} r_{4}, \tag{1}\\
& \rho \cdot r_{4}^{\prime}=a_{11} r_{1}+t_{4} r_{2}+{ }_{4}, r_{3}+a_{44} r_{4} .
\end{align*}
$$

We shath considere mbly the ease in which the determinant ' $a_{2 k}$ | is mot zero, these heing the mensingulere enllineations. Then to any puint r, contesemals a point r_{1}^{\prime}, for the right-hame members of (1) "ammo simultamemaly vanish. Also to any puint r, vorrespombs a print r, given by the equations ohtained ber shing (1),

$$
\sigma . r_{1}=1_{1}, r_{1}^{\prime}+1_{i r} r_{2}^{\prime}+.1_{i, i} r_{r s}^{\prime}+.1_{1}, r_{4}^{\prime} \text {. }
$$

 determinamt a,
liy means of (1) amy point which lies on a plane with ermirdinates ", is thamemmed inter a peint whinh lies on a plane with

(ail)

$$
p \prime_{1}^{\prime}=1_{1,1} \prime_{1}+.1_{2} 2_{2}+1_{1: 3} \prime_{3}+.1_{1} \prime_{4}
$$

$$
\begin{equation*}
\sigma u_{1}=n_{1} \prime_{1}^{\prime}+{ }_{21} n_{1}^{\prime}+{ }_{1 .,} n_{1}^{\prime}+{ }_{1} u_{1}^{\prime} . \tag{1}
\end{equation*}
$$

101. Types of nonsingular collineations. I millimatima han at
 are therefore giver by the cymations

$$
\begin{aligned}
& \left({ }^{\prime \prime}-\rho\right) x_{1}+"_{12} "_{0}+{ }_{1:} r^{\prime}+"_{11} "_{1}{ }^{\prime} \text {, } \\
& { }^{\prime \prime} r_{1}+\left("_{22}-\rho\right) r_{2}+"_{2} r_{3}+"_{4} "_{1}
\end{aligned}
$$

$$
\begin{aligned}
& "_{11} r_{1}+"_{12} r_{2}+"_{1 ;} r_{i}+\left(1_{11}-\mu\right)_{i}{ }^{\prime} .
\end{aligned}
$$

 hate a sondtion is that ρ sattisties the embation

${ }^{\prime}{ }_{1}$ -	${ }^{\prime \prime}$	${ }^{\prime}{ }_{1}$	${ }^{\prime \prime}$	
${ }^{\prime \prime}$	${ }^{\prime \prime}{ }_{2}$	${ }^{\prime \prime}$	${ }^{\prime \prime}$	
${ }_{1 / 1}$	${ }^{\prime \prime}{ }_{6}$,	
" ${ }^{1}$	${ }^{\prime \prime}$	${ }^{\prime \prime}$	";	P

[^6]

1. It least time diationt fixmel pimints met in the same flam. The fotr frimt may be taken as the vertare of the tetrabledron of
 ! ! ハー:

Triel.

$$
\begin{aligned}
& \rho r_{1}^{\prime}=\pi r_{1} . \\
& p \cdot r_{2}^{\prime}=\quad l_{1} r_{2} . \\
& p, r=\quad \quad \because r_{3} . \\
& \rho \cdot r_{+}^{\prime}=\quad d \cdot r_{4} .
\end{aligned}
$$

TYPE 11.

$$
\begin{aligned}
& \rho \cdot r_{1}^{\prime}=r r_{1} . \\
& \rho \cdot r_{-}^{\prime}=\quad 4, r_{2} \\
& \rho \cdot r_{3}=\quad, r_{3}, \\
& \rho \cdot r_{4}^{\prime}=\quad, \quad r_{i} \cdot
\end{aligned}
$$

Trir: $11 /$.

$$
\begin{aligned}
& \rho r_{1}^{\prime}=\| r_{1} . \\
& \rho \cdot r_{2}^{\prime}=\quad 4, r_{-} \\
& \rho \cdot r_{:}^{\prime}= \\
& \rho \cdot r_{+}^{\prime}=
\end{aligned}
$$

$$
\begin{aligned}
& p \cdot r_{2}^{\prime}=\quad=r_{i} . \\
& \text { p.is } \quad 1, r \text {. } \\
& p r_{i}^{\prime} \quad \mu_{i} .
\end{aligned}
$$

Triev:

$$
\begin{aligned}
& \text { p. } r_{1}^{\prime} \quad \text { r. } r_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { p.r } \quad \text { " } r^{\prime}, \\
& \text { pi! } \quad \text { tir: }
\end{aligned}
$$

 dons in the phan $r=0$ maty be wiven the forms fomm ins 11. Henter for whe spate colline atons we timb the following t?

True VI.

$$
\begin{array}{lc}
\rho \cdot r_{1}^{\prime}=u, r_{2}+ & r_{\because} \\
\rho \cdot r_{2}^{\prime}= & H, r_{2} \\
\rho \cdot r_{2}^{\prime}= & \because r_{n} \\
\rho \cdot r_{4}= &
\end{array}
$$

The enllineation hat the indated fixed puints. I, li, If and the

Grim: Vll.

$$
\begin{aligned}
& \rho_{1} r_{1}^{\prime}=\mu_{1} \div \quad r_{2} . \\
& \rho_{i}^{\prime}=\quad 1 \% \\
& \text { p.1 } \because, \\
& \text { p.ía } \quad \omega_{i}^{-}
\end{aligned}
$$

 Mamme with the an is (I)

Tire Vlll.

$$
\begin{aligned}
& \text { pi: } \because \because= \\
& \text { pis } \quad \cdots . \\
& \text { m' ". } \\
& \text { p.i: it: }
\end{aligned}
$$

 phame with the ber. $1 /$.

$$
\begin{aligned}
& \mu r_{1}^{\prime}=\mu_{1}+r_{3} \\
& \mu i_{i}^{\prime} \\
& \mu i_{i}^{\prime} \\
& \mu i_{i}^{\prime}
\end{aligned}
$$

 bumbe of sionl phans with surtex 1 ．

TMA．

$$
\begin{aligned}
& \text { Mi } \quad \text { 隹: }
\end{aligned}
$$

Tin：XI．

$$
\begin{aligned}
& \text { P.: " - - } \\
& \text { pis }=1 . \\
& \mu^{\prime}=\quad \cdots \cdots \cdot r_{0} \\
& \text { みi: "', }
\end{aligned}
$$

TYpに XII．

$$
\begin{array}{lc}
\rho \cdot r_{1}^{\prime}-a r_{1}+r_{2} \\
\rho \cdot r_{2}^{\prime}= & \mu r_{2}+r_{1} \\
\rho r_{1}^{\prime}= & l_{1} . \\
\rho \cdot r_{1}^{\prime} & \\
u_{1} .
\end{array}
$$

 l；＇l）， $1 /{ }^{\prime}$ ：

TYpe Xlll．

$$
\begin{array}{lc}
\rho \cdot r_{1}^{\prime}= & 4 r_{1}+r_{2} \\
\rho \cdot r_{2}^{\prime} & \quad 1, r_{2}+r_{1} \\
\rho \cdot r_{1}^{\prime}= & \quad 1 r_{1} \\
\rho \cdot r_{1}^{\prime}= & \quad 4 r_{1} .
\end{array}
$$

The collineation hat the lime of tixal printe lif amd the pernejt

 pumt matithe of $r_{+}=0$ ．If I^{\prime} is the point int＂whint 1 is than

 is the lollowiner ty＂：

TYロE Nノ。

$$
\begin{aligned}
& p, r_{1}^{\prime} \quad a_{1}+\quad r_{1}=
\end{aligned}
$$

$$
\begin{aligned}
& \mu, r_{i}^{\prime}
\end{aligned}
$$

EXERCISES

1．＇imstaring the tamalatun

$$
r^{\prime}=r+\quad \prime \quad \quad n^{\prime}=!+h, \quad \because=\therefore+r
$$

 lelame
a．Consument the retation
 ありいいい。

3．＇ansilering thw some motion

$$
r^{\prime}=r^{\prime} \cdot \pi-\phi-!\sin \phi . \quad y^{\prime}=r \sin \phi+!\cdots \infty, \quad \because^{\prime}=l:
$$

as a mbline ation．determinte its fixed pumts and the ty＂e whern it belonis．

 merets ρ ．

102．Correlations．I correlation of pint ant plate in shate is defined by the equations

$$
\begin{equation*}
\rho \prime_{1}^{\prime}=u_{11} r_{1}+"_{2} r_{2}+n_{1} r_{3}+u_{14} r_{4} . \quad(i=1,2,3, \quad, \quad) \tag{1}
\end{equation*}
$$

 puint r．wher

$$
p i^{\prime}-1_{1: 1}^{\prime \prime}+1_{1} n_{1}+111+1_{i^{\prime \prime}} \cdot
$$

（ -3 ）

 Cin！！！

 Whate, from (\because)

$$
\text { p.r } r_{1}^{\prime \prime} .1_{1} u_{1}^{\prime}+11_{1}^{\prime \prime}+11_{1}^{\prime}+11_{1}^{\prime u_{1}^{\prime}} .
$$

Thar lant "quationn - mo..t fir u' give

$$
\rho u u^{\prime} \quad "_{1}, r_{1}^{\prime \prime}+{ }_{\prime}, r_{1}^{\prime \prime}+n_{1}, r_{3}^{\prime \prime}+w_{i, r} r_{1}^{\prime \prime} \quad(1)
$$

 of (1) imit (t), hant
where ρ mand ratiafy due mondition

In the seembl wise the eormeration has the form

$$
\begin{aligned}
& \rho \mu_{1}^{\prime}=\quad \quad{ }_{12} r_{2}+"_{13} r_{3}+"_{14} r_{4} . \\
& \rho \prime_{2}^{\prime}=-"_{12} r_{1} \quad+"_{23} r_{3}+{ }_{24} r_{4} . \\
& \rho u_{3}^{\prime}=-u_{13} r_{1}-t_{23} r_{2}+t_{34} r_{4} \text {, }
\end{aligned}
$$

 be shown that by choiee of axts the correlation may be reduced (1) the standard form

$$
\begin{aligned}
& \rho u_{1}^{\prime}=x_{2}, \\
& \rho u_{3}^{\prime}=-x_{1}, \\
& \rho u_{3}^{\prime}=x_{4}, \\
& \rho u_{4}^{\prime}=-x_{3} .
\end{aligned}
$$

Amother question of interest is to determine the comdition mater which a puint l lies in the plane f^{\prime}. inter whirh it is transformed. From equations (1) it follows at one that the coürdinates of P^{\prime} munt atisfy the equation

$$
\Sigma a_{i k} \cdot r_{i} r_{k}=0 .
$$

This expation is satistied intentiablly only in the ease of the mall Stom: otherwise it determines a qualdie surfate A_{1}, the loctas of the penints I which lie in their reseetive transommed phanes. similaly, the pames p whifl pas thomgh their respective thansformed perints ancelop the qualrie \boldsymbol{S}_{2}.

$$
\sum 1_{i} \prime_{i} \prime_{k}=0,
$$

wheh is in eremeral distimet from κ_{1}

EXERCISES

 the rahe of a l"blarity or a mall sotem.
 -
 :u1nm:
103. The projective and the metrical groups. The prolut of two nomsingular collineations of of two nomsingular rantlathon is a monsingular eollintation. Wence the totality of all collimations
 identical substitution. Projection erematry may le defind at that
 are invariant mater the frojeetive gromp. In this gednetry the finte at intinty has mo maiphe property distimet fomm these of wher phanes nor is the imagramy virele at intinity restmtially different fom any other contice and all questions of meantrement disappear. (Quatrix suffate are distinguished mbly the preseme alled hature of their simgulat pemts.
 Fon wamphe the collintalions laken withont the correlations form a subporp, bat the comelations alone form no groupt All anlint ations with the same tixal points obsionsly fom a suberonp. Agam, all eothaneations which leate a given quatrio surface insariant fomm a subgronp. (of great importance among then latter is the gronp, whieh latyes the imaginary arele at intinity insariant.
 plise all distamers bey the same cemstamb.

The Erameal form of a transmmation of the metrical erony is

$$
\begin{aligned}
& \rho . r^{\prime}=l_{1} r+m_{1}!\prime+"_{1} z+l_{1} t .
\end{aligned}
$$

$$
\begin{align*}
& \rho z^{\prime}=1 \quad r+m_{3}!+M_{j} z+l_{n}^{\prime} t . \tag{1}\\
& \rho t^{\prime}=t \text {. }
\end{align*}
$$

Where the coefficients satiof the comditions

$$
\begin{align*}
& I_{1}^{2}+I_{2}^{2}+1_{3}^{2}=m_{1}^{2}+m_{2}^{3}+m_{3}^{2}=n_{1}^{2}+n_{2}^{2}+m_{3}^{2} .
\end{align*}
$$

 peints is bes this tamafomation he thas the distane hetwoen the

 trimbles.
 fixed form a eroup of collineations in that phate by wheh the arembar points at intinty are invariant. This eromp is therefore the metrical group in $/$, and the projective detinitions of angle amd distance given in Ş stamd.

EXERCISES

1. If $/ 1$ is the determinant of the coeflicionts $/, m, 1$ in (1), show that $11= \pm i^{3}$.
2. Show that the necessary and sutherient emmition that (1) shombld reprecent a mechamian motion is that $l=+1$, and that it should repore sent a motion combined with a rethetion mony plane is that $l=-1$.
3. Show that if $l= \pm 1$ in addition toromditions (\because) and ($: 3$), we have

$$
\begin{gathered}
l_{1}^{2}+m_{1}^{2}+m_{1}^{2}=l_{2}^{2}+m_{3}^{3}+n_{2}^{2}=l_{3}^{2}+m_{3}^{2}+n_{3}^{3}=1 . \\
l_{1}^{\prime}+m_{1} \prime_{2}+m_{1} n_{2}=l_{2_{3}}^{\prime}+m_{2} m_{3}+n_{2} n_{3}=l_{3}^{\prime}+m_{3}^{\prime} m_{1}+n_{3} n_{1}=0 .
\end{gathered}
$$

104. Projective geometry on a quadric surface. It has alreaty been moted (569) that the geometry on a surface of secome were with the 1 se of quadriphanar cördinates is dualistio to the gemm-

 $r_{1}, r_{2}, r_{3}, r_{4}$, boumd hy a quadratie relation

$$
\begin{equation*}
\omega(x)=0, \tag{1}
\end{equation*}
$$

which is, on the one hand, the egnation of the guatric surfate and. (th the other hame, the fimdamental relation commecting the totacrelinal roindinates.

Suy peint $/$ on the quatrie surface maty be taken as aroceponding to the peint at intinity on the plate, sinee the print at infinty is in mo way sereial in the andrsis. Any linear equation

$$
\Sigma_{1} x_{1}=0
$$

 divtmetion in this :

If 1 , is a print on the ynatrie surfare and we hatere in (\because)

$$
\mu=\frac{(\omega)}{1 /}
$$

 at / entrepemals to the lowes at intinity on the plathe.

 for !t. The values of !t man satifle (1) ame the sulatimtion wise the equation

$$
\eta(1): 11
$$

(1)

Two dreles on the phate are perpumbindar when

$$
\Sigma_{1, \prime \prime}^{\prime \prime} \quad \eta(1, l)=1 .
$$

 "and phate enmatans the pelle of the where.

them passes through the pole of the phane corresponding to C or, in other words, such that the line comereting them passes threugh the pole of the phane corresponding to $($. Since the conter of a circle on the phane is the inverse of the point at infinity with respert th that direle. the point on the quadric whith corresponds to the renter of a dircle may be fommd by commerting the point I with the pole of the plate corresponding to the circle.

An inversion with respeet to a circle eoresponds in space to a mollineation which transforms each point into its inverse with respect to a fixed plane. That is, if the fixed direle corresponds to the intersection of the quadrie with a plante M, and K is the pole of M, an inversion with respect to.I tramsoms any point I_{1} on the quadric into the point I_{2}^{\prime}, where the line $K I_{1}^{\prime}$ again meets the quadric. The eollineation which carries out this transformation has the plane h as a plane of fixed points and the point K as a point of tixed planes.

Consider now the parameters (λ, μ) on the smeface. defined as in Ş at. They may be taken as the cördinates of a point on the surfare and may be interpreted dualistically the the sereial courchinates

 is chatistic to the gemerators through the peoint I of the surface.

The bilinear equation

$$
\begin{equation*}
a_{1} \lambda \mu+a_{2} \lambda+a_{8} \mu+a_{4}=0 \tag{6}
\end{equation*}
$$

represents a plane seretion of the quadrio surface and is dualistie to the equilateral hyperbola on the phane with two sperial lines as asymptotes. A section of the quatrie surface throngh / corresponds to an ordinary line on the phane from whieh it is evident that by the nse of the sperial coürelinates the straght line has the properties of the equilateral hypertolat.

Any collineation of pate whirh leaves the qualrie surface insariant gives a limen transommation of λ ame of μ. 'This is evident from the face that the collineation mast trans form the lines of the surface into themselver in a ont-to-ome manter. It may also bre provel amalytically from the relations of Sati.
 malintation whirh latse the qualric invariant.
（＇mader in fart the substimtion

$$
\lambda=\begin{align*}
& n \lambda^{\prime}+\beta \tag{7}\\
& \gamma \lambda^{\prime}+\delta
\end{align*}, \quad \mu=\mu^{\prime}
$$

Whith leates the wemerathe of the semond family fixel and tran－
 （1）（ommphte that this is empiatent th the eothineation

$$
\begin{aligned}
& \rho \cdot r_{1}=(r+\delta) r_{1}^{\prime}+i(x-\hat{\delta}) r_{2}^{\prime}+(\gamma-\beta) r_{2}^{\prime} \quad i(\beta+\gamma) r_{1}^{\prime} \\
& \rho r_{-}=i(-a+\hat{i}) r_{1}^{\prime}+(x+\delta) r_{2}^{\prime}+i(\beta+\gamma) r_{i}^{\prime}+(-\beta+\gamma) r_{+}^{\prime} . \\
& \text { p.r: }=(, \beta-\gamma) r_{1}^{\prime}-i(\beta+\gamma) r_{2}^{\prime}+\left(r+\delta, r^{\prime}+i(-a+\hat{o}), r_{4}^{\prime}\right. \text {. } \\
& \rho r_{4}=i(\beta+\gamma), r_{1}^{\prime}+(\beta-\gamma) r_{2}^{\prime}-i(r-\hat{c}) r^{\prime}+(r+\hat{c}) \cdot r_{4}^{\prime}
\end{aligned}
$$

$$
\lambda=\lambda^{\prime}, \quad \mu=\begin{align*}
& \prime \prime \mu^{\prime}-\prime \prime \tag{1!}\\
& l^{\prime} \mu^{\prime}+\eta
\end{align*}
$$

bs whinh the gemerators of the first family are fixme and for the produci of（ 7 ）atul（！ 4 ）．

Finally，the collintation correspondiner th the trambimmation

$$
\lambda=\begin{aligned}
& n \mu^{\prime}+\beta \\
& \gamma \mu^{\prime}+\delta
\end{aligned} \quad \mu=\frac{m \lambda^{\prime}+\prime}{\mu^{\prime} \lambda^{\prime}+\prime} \quad \quad(10,
$$

 compulat．

EXERCISES

 ahmon the axis 1% thment an angen ϕ ．

 $1 .+1$
（a）$(, r)=1$
 platra loy the matamement．and het

$$
\text { ! I(11) } \quad 1
$$

If 1 and B ate ally $t w n$ peints and T_{1} and T_{2} are the peints in which the lime Als merte the quadric. then the distance I) between A and 1 ; is detined by the equation

$$
I=\kappa \log \left(.11: T_{1} T_{a}\right):
$$

$$
\begin{aligned}
& \omega(\% / z)-\backslash \omega(\%, z)]^{2}-[\omega(y)][\omega(z) \mid
\end{aligned}
$$

 gent plames to the qualrie through the intersection of "taml h. the angle ϕ betweren amd bis derined hy the erpation

 the other: fine in (t), if $\Omega(11, \cdot)=11$, then $\phi \quad: \quad \operatorname{lng}(-1)=\underset{\sim}{\square}+11 \pi$.

A lime is perpendientar to a phane of if exery plate thenthathe
 pole ai $1 /$.

We may define the imghe betwern two lines in the same plame as the angle hetwern the two phanes through the line and pergendientar to the flame of the lines. That is the same an dedining the
 rationt the two lines and the two tament limes drawn in the ir phan 10 the qualrir surface.

S- in Chapter VII wh hate there vase:
 mander mb the -

 dinatw maty be matn a-

$$
112+11=+110
$$

$$
y^{2}+1^{2} z^{2}-11.11
$$

we hatre at meaturement in whinh

$$
I \prime=\left(, r-r^{\prime}\right)^{2}-\left(!\quad l^{\prime}\right)^{2}-1: \quad \Xi^{\prime}, 1 .
$$

ath the amere hetwern the two phame

$$
\sqrt[n^{2}+l \cdot]{ }+\cdots, n^{\prime}+l^{\prime} \quad, \therefore
$$

a collineation which leaves the gratrie invariant. Among these transfomations are those of the type

$$
\lambda=\begin{align*}
& a \lambda^{\prime}+\beta \tag{1}\\
& \gamma \lambda^{\prime}+\delta
\end{align*}, \quad \mu=\mu^{\prime}
$$

Which transom the aremerators of the first family among themselves bus have "ach gememter of the seeond family unchanged.

For reasons to be given later we call such a transformation a tratmsution at the first kimd.

Similarly, the tramsformation

$$
\begin{equation*}
\lambda=\lambda^{\prime}, \quad \mu=\frac{m \mu^{\prime}+\eta}{\rho^{\prime} \mu^{\prime}+\eta}, \tag{2}
\end{equation*}
$$

We which the generaturs of the serond family are transformed but calh of the tirst family is left unchanged, is called a translation of the wormend kind.

Comsider a tramsation of the first kind. On the fundamental quadric any grmerator of the seomed fanily is left mehanged as a whole, hat its individual points are transformed, except two fixed peints, fow which

$$
\begin{equation*}
\lambda=\frac{\alpha \lambda+\beta}{\gamma \lambda+\delta} . \tag{3}
\end{equation*}
$$

This equation defines t wo memerators of the first kind, all of whese peints ate fixed. Homee. in a trensletion of the first kind there

 rowte of (is) maty he eymal.
(all the two fixel sememats: $!$ and h. Then any line whish intersects ! amd h is fixed, sine two of its peints are tixed. Also theregh any feint f in apee one and ouly one line ran be drawn

 :/ and hate inasinary. Then, if a reat pint I is transformed into

 jugate imatinary valume of λ and μ. Themefore it ot translation of the

 may repterent a real antritution δ mast be conjumate imatimaty to
 $\delta=d-i, \beta=-l+i n . \gamma=-l+i$, and hata

$$
\begin{align*}
& p r=-h r_{i}^{\prime}+r_{2}^{\prime}+r_{i}^{\prime}+\cdots r_{i}^{\prime} \text {. } \tag{1}\\
& \rho r_{+}-r_{1} r_{1}^{\prime}-h_{1} r_{2}^{\prime}-r_{2}^{\prime}+h_{i}^{\prime} .
\end{align*}
$$

 matrimar.

 phating $K=\underset{\because}{\because}$. There results

$$
I=\begin{aligned}
& i \\
& \because \quad \log \\
& d+i \sqrt{1^{2}+l i^{2}+1^{2}} \\
& d-i \sqrt{1^{2}+1 i^{2}+}=10^{-1} \\
& 11^{2}+1 i^{2}+\cdots+12^{2}
\end{aligned}
$$

It is this pryerty whinh gises to the manamonation the mame

 By EnMlidan mandation.

Similar theorems hodd for transations of the seoond kind. The two kinds of thanslations ditter. howerer, in the semse in which the torning of the planes takes phare.

By a tamslation of the seeond kind Clifford pamalle of the first Kind ate thansormed into themselves. For by the tamskation of the seond kind all eremeators of the tirst kind are fixed, and eonsequently any line intersecting two such generators is transformed into a lint intersecting the same two generators. Hence tren (lifforal
 Cliffiorel puratlels at the uther kimel.

Let $L K$ ant M M lwo ('lifford parallels of the first kint, th and h the two fixed grenterators which determine the parallels, and
 two gemerators $!^{\prime}$ and h^{\prime} of the seromd lind and is therefore one of a set of (lifford paralle of the seeond kind. Therefore there exists a tramsomation of the seeond kind les which I 'G is fixed

 the projertise semse. 'That is, if a line cats tere Clitford parallots,

In patienlar the line may be so drawn as to make the amerle
 LK dettermine a phane ρ and in this phane a perpendienlar van be
 with the peint in whels the phane p is met he the reedpreal polar

107. Contact transformations. I tramsformaion in spate. expres-

 of at phate surmonting a print. In fatt, hot thr mathtume of the

 extents of phate rhements. Sinch an extent we shatl demme bey and hall ensmber there tepes

 bsterention

$$
\begin{equation*}
d z=1^{\prime \prime} l \cdot+1 \cdot \frac{1}{n} \tag{1}
\end{equation*}
$$

for all differemials du and 1 ll. 'Then

$$
\begin{aligned}
& { }^{\prime z}=1_{1 \prime \prime}^{\prime \prime}+y_{1 \prime \prime}^{\prime \prime \prime} \\
& \prime_{1 \prime \prime}^{\prime \prime} \\
& \frac{z}{r \prime}=1_{1 \prime \prime}^{\prime \prime}+\eta_{1 \prime \prime}^{\prime \prime \prime}:
\end{aligned}
$$

 there buints.

 mblumbum. 'The Y_{z} then amsists of a perint with the bumble of
 1.i. d! ame la ame all zoro.

It in hear that the 14 detmed abose do mot exhanst all pos-
 - ammper we might take the pints ats points on a surfare and the
 the - whate: and other examples will orole to lhe stment. The
 than (1) is trme an the stment maty verify. We shall say that a set

 and a surface ate in contart when they are tangent in the woli-

 there tyes of sheh tamanmations, which we shall proced to dianto in the following swtims.
108. Point-point transformations. This transformation is detinend by there entations of the fomm

$$
\begin{align*}
& r^{\prime}=t_{1}^{\prime}(r, z) \\
& !\prime(r, z) \tag{1}\\
& n^{\prime}=f_{1}^{\prime}(r, z)
\end{align*}
$$

$I \prime\left(I,!\cdot \therefore \cdot I^{\prime}, z^{\prime}\right)=1$,

$$
\digamma^{\prime}\left(1,4, r^{\prime} \cdot y^{\prime} \cdot z^{\prime}\right)-11
$$

 where

$$
\begin{align*}
& \text { d!y }-\frac{1}{\prime \prime} d!+\frac{!!}{\prime \prime} d!+{ }^{\prime}{ }^{\prime}!!^{\prime} d z,
\end{align*}
$$

 into tangent surfares. Dane equatimalls the mation

$$
\begin{equation*}
\text { dz } \quad l^{\prime \prime \prime}!+!!! \tag{1}
\end{equation*}
$$

Which defimes at mion of lime rements. is transformel into

If mas we deflue f^{\prime} allel y^{\prime} so that this relation is

$$
\begin{equation*}
d z^{\prime}-y^{\prime}, l y^{\prime}+y^{\prime} d y^{\prime} \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& I^{\prime}=t_{1}^{\prime}(\because \cdot, \cdot z \cdot l \cdot y) \\
& y^{\prime}=i_{i}(\cdots, y \cdot \because \cdot y)
\end{aligned}
$$

 at the wigin and ratins lo, the tamoformation is

$$
\begin{aligned}
& z^{\prime} \quad l^{\prime 2}: i^{\prime \prime}
\end{aligned}
$$

EXERCISE

Disems the froperties of the inversion with respert to a sphere, biberially with refereme to singhar perints and lines.
109. Point-surface transformations. Such a transformation is小-tined hy the equation

$$
\begin{equation*}
f^{\prime}\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

With the nsual hyputheses al antimity ant differentiability of f. An example is a comelation sime it may he expresed by the single

By equation (1), if (x, y, z) is tixed. ($x^{\prime}, y^{\prime}, z^{\prime}$) lies on a surfare m^{\prime},
 is fixed, the perint (x, y, z) describes a surfate $1 /$, where the surfaces \prime^{\prime} and m ate not ne eressaly of the same charatere. If l^{\prime} is $01 m^{\prime}$ it is whions that $1 /$ contams I. In other worts, if P deserifers a surface It, the correspombing surface, mentimes to pasc thomgh I^{\prime}. We saty therefore that the surfare m is transformed into a point I^{\prime}.
 surfare mi will in ereneral ravelop a surface s", the transformerl surfare of \therefore Analytieally, from the genemal then'y of envelopes if the equation of \dot{x} is

$$
z=\phi(\ldots,!)
$$

and $\mu=\frac{c \phi}{r r}, y=\frac{r \phi}{r!}$, the expuation of $\breve{s}^{\prime \prime}$ is fomm ly eliminating $r \cdot!$, and z from (1) and (-2) and the two equations

$$
\begin{align*}
& \frac{c t}{c t}+t^{\prime} \frac{c t}{c z}=0 .
\end{align*}
$$

 the tamgent plane to mi at that print. and hence. il we wre f^{\prime} and y^{\prime} to tix that platre. We have

$$
\begin{align*}
& \because+\prime^{\prime} y^{\prime}=0 \tag{i}\\
& \ddots z^{\prime}=0 \tag{i}\\
& \because+y^{\prime}=0 \\
& \ddots z^{\prime}=0
\end{align*}
$$

 (1) いbtain the form

$$
\begin{aligned}
& r^{\prime}=\phi_{1}(r, y \cdot z \cdot l \cdot y) \\
& y^{\prime}=\phi_{i}(r, y, z \cdot l \cdot y) \\
& z^{\prime}=\phi_{i}(r \cdot y \cdot z \cdot l \cdot y) \\
& y^{\prime}=\phi_{1}(r,!\cdot z \cdot l \cdot y) \\
& y^{\prime}=\phi_{i}(r, y \cdot z \cdot l)
\end{aligned}
$$

EXERCISES

1. Stuly the tramformation detimed lis the +gmation

$$
r^{\prime}-y^{\prime}+\because^{2}-\left(r^{\prime} r^{\prime}+!!y^{\prime}+\because^{\prime}\right)=0 .
$$

2. Stuly the tmandomation thefmed lin the equation

$$
\left.\left(x-r^{\prime}\right)^{2}+(!)-n^{\prime}\right)^{2}+\left(\because-\because^{\prime} r^{2}=n^{2} .\right.
$$

110. Point-curve transformations. ('unsiler a transformation detintel by the tua equations

$$
\begin{align*}
& f_{1}^{\prime}\left(r, y \cdot z \cdot r^{\prime},!^{\prime}, z^{\prime}\right)=11 \\
& f_{\because}^{\prime}\left(r,!\cdot, r^{\prime} \cdot y^{\prime} \cdot z^{\prime}\right)=0 . \tag{1}
\end{align*}
$$

With ($x^{\prime}, y^{\prime}, z^{\prime}$) tixent, (2) represents a pemeil of surfaces through a k-elure and the tangent phate to any one of these surfaces at a peint on the Ferure las at p and a 4 given by the remations

There is therefore thus detined a pencil of plane elements thengh a perint P and tangent to a k-curve through that pant.
similarly, with (x, y, z) tixed, equation (\because) detines a perncil of surfaces through a k^{\prime}-curve and a corresponding pencil of phane elements is detined by $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ and

$$
\begin{equation*}
r^{\prime}=-\frac{c_{1}^{c t_{1}^{\prime}}+\lambda \frac{c f_{z}^{\prime}}{c x_{2}^{\prime}}}{c t_{1}^{\prime}+\lambda \frac{c f_{2}^{\prime}}{c z_{2}^{\prime}}}, \quad y^{\prime}=-\frac{c y_{1}^{\prime}+\lambda \frac{c y^{\prime}}{c z^{\prime}}}{c z_{1}^{\prime}}+\frac{c y^{\prime}}{c z^{\prime}}+\lambda \frac{c t_{2}^{\prime}}{c z^{\prime}} . \tag{4}
\end{equation*}
$$

From (: $)$ and (t) it is easy to compute that $d z-p h x-y d y$ is transformed into $d z^{\prime}-p^{\prime}\left(l x^{\prime}-q^{\prime} d y^{\prime}\right.$ exeept for a factor. So that if (., !. $, z, f^{\prime}, q$) is tramsformed into ($x^{\prime}, y^{\prime}, z^{\prime}, f^{\prime}, y^{\prime}$) by means of (1). (:) and (4), a mion of plane elements is transormed into a mion of plane elements.

From the six equations (1), (3), (t) we may miminate λ and , btain tive equations which may be reduced on the form

$$
\begin{aligned}
& x^{\prime}=f_{1}^{\prime}(x, y, z, r, q) . \\
& y^{\prime}=f_{z}^{\prime}(r, y, z, p, q) \text {. } \\
& z^{\prime}=f^{\prime}\left(, \cdot, 4, z, l^{\prime}, q\right) \text {, } \\
& f^{\prime}=t_{4}^{\prime}(r, y, z, p, q), \\
& y^{\prime}=t_{i}^{\prime}\left(r \cdot y \cdot z \cdot z \cdot f^{\prime} \cdot q\right),
\end{aligned}
$$

whinh define the enlarged femeternere contare transformation derived from (1).
 throush it. Eqnations (1) definm a k^{\prime}-rurve and we maty romsider
 taken athmarily. Then, if the values of z^{\prime} and ! y^{\prime} in twoms of x^{\prime} ate subntithted in (: ${ }^{\prime}$), buth λ and x^{\prime} may be determined. Finally,
P^{\prime} and f^{\prime} are detemined from (f). This shows that at dinite

 into a $l_{\text {. a atory }} k^{\prime}$.

 lír.orse.

EXERCISE

staty in detail the tran-mmatinn detimed by the whations

$$
\begin{aligned}
& \left(r^{\prime}+i, r^{\prime}\right) \quad \therefore^{\prime}-r-0, \\
& \left.\therefore\left(, r^{\prime} \quad i, r^{\prime}\right)+\because^{\prime}-!-1\right) .
\end{aligned}
$$

CHADTER XV

THE SPHERE IN CARTESIAN COÖRDINATES

111. Pencils of spheres. The quation

$$
\begin{equation*}
u\left(r^{2}+!n^{2}+z^{\prime}\right)+\because!+!+\because!!+\because h z+\cdots=0 \tag{1}
\end{equation*}
$$

 grive by the equation

$$
\therefore t^{2}+!^{2}+h^{2}-1 r^{2} .
$$

s

$$
\grave{y}_{1}=10, \quad \grave{y}_{2}=11 .
$$

The imerome at right atrye when and only when the squate

$$
\because\left(t_{1} t_{2}+1_{1} 1_{2}-h_{1} h_{2}\right)-1_{1}{ }^{2}-1_{2} r_{1}=11 .
$$

'Ther phater detiment hy the whman
\therefore - 11 . (i)

 "hioh is fomm ly plaming λ ": in (i).

" $\times 1.11$
(i)

M

The centers of the shares of the permeil hate the amblimater

$$
\left(\begin{array}{lll}
i_{1}+\lambda_{1} i_{2} & 1_{1}+\lambda_{1} 1_{2} & l_{1}+\lambda_{1} \\
n_{1}+\lambda_{1}, & n_{1}+\lambda_{1} & n_{1}+\lambda_{1} \prime_{2}
\end{array}\right)
$$

and therefore lis in atmarta lime perpentionlar on the manal

 at the erenter of 1 :

 of rathers is promadionlar to it.

 10 the rallatal plate at . A.

The pexition of the ratieat flathe in the seromb form of the fermil

 of the tancent th he

$$
\begin{aligned}
& r_{1}+\lambda r_{1} \\
& a_{1}+\lambda r_{1}
\end{aligned}
$$

$$
x_{1} \lambda_{1} x_{1}, \prime_{1} .
$$

$$
\prime_{1} \quad \prime_{1}\left(\prime_{1}+\lambda_{1}\right)
$$

The last part of this theorem is a comsequene of the previons theorem. The dirst part is a romsequence of the linear hature of the comblion (t) for orthegenality.
112. Bundes of spheres. The spheres detined he the erpation

$$
\begin{equation*}
r_{1}+\lambda s_{2}+\mu s_{3}=11 . \tag{1}
\end{equation*}
$$

where x_{1}. x_{z}, \dot{x}_{3} are three spheres mot belonging th the same permil and λ, μ are arhitary parameters. form a hemethe of shames.

The eenters of the spheress of the bundle have the conimedinates

From (\because) it follows that if the renters of the there opheres si, $S_{2} . S_{3}$ lid on a staight lime the emters of all wheme of the hambe lie on that line. The cemter may be anywher on that line and

 struight lime.
 same staigh line, the? will demmine a plate and the rembers of all eqheres of the hmolle lie in this phate. This phame is the phone at' antors. and aly puint in it is the center of a plane of
 two fints (real, imatimary or eqimedemt) and all yheres of the bumble fase throngh these peints. If the two peime are distinet.
 are concident, they lie in the phane of anters. Hemee we see that

 pairs, ater

$$
\begin{aligned}
& "_{2} \sum_{2}-"_{1} M_{2}=0 \text { 。 } \\
& { }^{\prime} ; י_{1}-"_{1} י_{3}=0, \\
& "_{2} \times-1 x_{2}=1,
\end{aligned}
$$

 radian fane of any two gheres of the bumbe paws thones the malial axis.
 to all the spheres of the hamdle harame of the limear form of

 axis is the center of sumb aphere. It is mot difitult then shat thest -pheres form a pemeil.

A- far as the detats of the abose theorem ham mot beat ox -
 thas stmtant.
('lowely emmerted with the foregring theorem is the forlowines:

 mot all planes. If they are the hmalle of spheres rednees to a
 ome-timmemomal extent of planes thromgh the ratianal avis of ther bumlle.
113. Complexes of spheres. Ther phemes repremhent in the "quation

$$
\begin{equation*}
s_{1}+\lambda s_{2}+\mu s_{3}+י_{4}=1 \tag{1}
\end{equation*}
$$

 renter is the redianal anter af the ermples.

If the fomer sheres interseet in a point that peint is the radieal renter. The hase sphere is then a sphere of ratius zero and the complex comsists of pheres pasing through a paint.

The aboue discumsion assmes that the four sheres S_{1}, S_{2}, S_{2}. S_{4} are wot phanes. If they are, the complex simply eomsists of all phames in spare. lat the gemeral ease the complex contains a dembly intinite set of phanes which pass through the renter of the base where.
114. Inversion. Let whe the eenter of a fixed sphere s, he the spuare of its radins, and I any point. The point I may be tramsformed into a print P^{\prime} by the comblition that $\quad P^{\prime} P^{\prime}$ forms a straight line and that

$$
\begin{equation*}
\left(1 I ^ { \prime } \cdot \left(1 I^{\prime}=l^{\prime} .\right.\right. \tag{1}
\end{equation*}
$$

This tramsfomation is an inversi,n, or transfomation by remp-
 ghlerer is is the ephere with respeet to which the inversion takes plate.

If the print " hat the ceriordinates $\left(r_{n}, y_{0}, z_{n}\right)$, the equations of the transformation are

$$
\begin{aligned}
& r^{\prime}=x_{0}+\frac{l^{\prime}\left(r^{\prime}-x_{n}\right)}{l_{i}^{2}}, \\
& y^{\prime}=y_{n}+\frac{h^{2}\left(y_{1}-y_{n}\right)}{l_{i}^{2}} \\
& z^{\prime}=z_{0}+\frac{h^{2}\left(z-z_{0}\right)}{l_{i}^{2}},
\end{aligned}
$$

where

$$
r^{2}=\left(r-r_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{11}\right)^{2} .
$$

In this transformation the eonstants may be either real or

 and h^{2} real and bergtive the inversion is with reforemer to a

To handle these sperial rane we take "at the wigh and wrine "ghatione (\because) with hommerneons rourdinates as

$$
\begin{array}{ll}
\rho \cdot t^{\prime} & l^{2}, l t . \\
\rho y^{\prime} & h^{2}!t t . \\
\rho z^{\prime} & h^{2} z t . \\
\rho t^{\prime} & r^{2}+y^{2}+z^{2}
\end{array}
$$

From (\because) it appears that the tranforment print of 1 is imbere
 the print I^{\prime} recedes to intinity and is transfarmed into the print at
 sion is transomed inter the elltire plane at intmits. (onversels. any perint on the phane at intinty hat mot on the eirele at intinit? is transformed into 1 .
 Arele at infinity, then $r^{\prime}: y^{\prime}: z^{\prime}=r: y: z$ aml $t^{\prime}=0$. That i-. all puints on a minimum line thoursh 1 is trameformed into the primt
 versely, if P is on the imagimary cirele at infinity the trambomen pint is indetemminate, hat $r^{\prime}: y^{\prime}: z^{\prime}=r: y: z$, su that any print ont the rifele at intinity is transformed into the minimum line thensin that print and the ernter of insersion.
('maviler mow a sphere stwith the mplation

$$
\prime\left(r^{2}+\ddot{n}+z^{\prime}\right)+\because t r+\because!!!+\ddot{\prime} h z+\cdot 11 . \quad(t)
$$

It is transformed intu

 themerfors.

By an insersion the angle between two entres is eftal to the angle betwern the two transiomed rames: that is. the transformation is rantin'mat. To prose this we complute from (-) (with $r_{1}=11, \|_{1}=11, z_{n}=11$)

$$
\begin{aligned}
& d r^{\prime}=\frac{l^{2}}{l_{1}^{2}} i\left(y^{2}+z^{2}-r^{2}\right) d x-0, r y l!y-2, r z, z_{1}^{\prime} .
\end{aligned}
$$

$$
\begin{align*}
& d z^{\prime}=\frac{h^{2}}{l_{i}^{i}}:-2 z r d r-2!z d!+\left(r^{2}+!y^{2}-z^{2}\right) d z_{j}^{\prime} . \tag{b}
\end{align*}
$$

Hence, if we plate $1 x^{\prime 2}=1 . x^{\prime 2}+1 y^{\prime 2}+1 z^{\prime 2}$ amd $19 x^{2}=1 . x^{2}+11 y^{2}+1 z^{2}$, we have

$$
d s^{\prime}=\frac{l^{2}}{l_{1}^{2}} d x
$$

$$
\ldots N a=\frac{d m \delta r+1!y \delta y+1 z \delta z}{1 m \delta x}
$$

Similarly, the ansle \boldsymbol{r}^{\prime} between the transfomed ames is

$$
\left(\cdots, r^{\prime}=\frac{\| r^{\prime} \delta r^{\prime}+l!u^{\prime} \delta y^{\prime}+d z^{\prime} \delta z^{\prime}}{l x^{\prime} d x^{\prime}}\right.
$$

amb it is easy to prove from (i) that rasir $=$ (ons \boldsymbol{r}^{\prime}.

similaty. the phate of rentere of a hmalle is mansmoned into a

 of -

 spheres whose refters ate on a tixed phathe.

EXERCISES

1. Prowe that hy an invernion with rexped tora fhere sall -pheres

 ther - -

 to a metrial tramsfomation alone.
2. Dupin's cyclide. 'The transurmation by inversion is nseful

 (1) theer lived sheres.

If the eronters of the fixed pheres do not bee in a straight line we mas hy inverson hring them into a staght linte. 'To do this we hase simply to drats, in the plate of the renters of the threse

 the romformal natho of inversion. For the same reason the surace
 roped into a surfare mavelaped be spheres tangent to three spheres whone centers lie oh a shaight line.

 rurlide.

Lat as take the lime of menters of thee fised pheres as the axis of zaml lan equations of the phemes as

$$
\begin{align*}
& r^{2}+y^{2}+z^{2}-r_{1}^{\prime} \\
& r^{2}+y^{2}+(z-r)^{2}=r_{3}^{2} \tag{1}\\
& r^{2}+y^{2}+(z-r)^{2}=r_{3}^{2}
\end{align*}
$$

'Then, if the yhern

$$
(1 \quad 11)^{2}+(!-b)^{2}+(=-r)^{2}=-r^{2} \quad(\because)
$$

 wives the thre. (aphation

$$
\begin{aligned}
& 11^{2}+\boldsymbol{r} \cdot \cdots(\because: r)
\end{aligned}
$$

whinh lave in erneral forn solntimn of the tom

$$
\therefore=\text { anmot., } r=\text { amsi.. } \quad 1 .
$$

 of whith comsints of opheres with at remotan mathe and with
 ring surfare.

 tivert ophemes.

 maty lhen be waturn

$$
\left(1^{2}+1^{2}+\vartheta^{2}+11^{2}, 1+\quad\left(1-\left(1^{2}+1^{2}\right)\right.\right.
$$

 the axis of z the amot

This family monsis of pheres with their emters on whe eath of

 maned hy the amdition that they are tangent in at hetinite mammer tw hate sphere of (5).

The phates of tath family of aneles interate in at staight lime. This follows from the themems of 112 , shme the incore stheres

 the ratimal axis af the homble. similarly for the - bhere (-).

 are Masmaty.

 from the migita．There equation of the come is therl

$$
\begin{equation*}
\left(r \quad(2)^{2}+(.11-\beta)^{z-}-I^{2}(z \quad \gamma)^{2}=11\right. \tag{11}
\end{equation*}
$$

aml its invorse with rejuet to the onturin is

$$
\begin{align*}
& +l_{i}^{4}\left(r^{2}+!I^{2}-m I^{2} z^{2}\right) \quad 11 . \tag{11}
\end{align*}
$$

 invert the 9 limbu

$$
\begin{equation*}
\left(x \quad, \quad()^{2}+(11-\beta)^{2} \quad, r^{2}\right. \tag{1:}
\end{equation*}
$$

athl ohtain for it invorn

$$
\begin{aligned}
\left(n^{2}+\beta^{2}-r^{2}\right)\left(r^{2}+y^{2}+z^{2}\right)^{2} & -\because l^{2}\left(1,1+\beta^{\prime}!\right)\left(r^{\prime \prime}+y^{2}+z^{2}\right) \\
& +l^{2}\left(1^{2}+y^{2}\right) \quad(1 .
\end{aligned}
$$

 thrmanh the renter of inversion．
 amel fitre $f=010$ detemmer the section with the plate at intinity，

 litue．whell the surface is of the third onder．

 with the reidele et intinity as a simple collere．

 will makr the abhoeviations

$$
\begin{aligned}
& 1-14^{2} 111^{2} y^{2} \text {. } \\
& \text { I } r^{2}+y^{2}+z^{2} \\
& \text { l. } 12,1 m^{2} \gamma .
\end{aligned}
$$

alld writr lhe eynation it

$$
\begin{equation*}
1 l_{i}^{=} \quad-l i l i=l^{4}\left(x+y^{2} \quad m^{2}=11 .\right. \tag{11}
\end{equation*}
$$

The singular puints are then the solutions of this equation and the following fommed tor taking the part ial derivatives with respect （1）r．．1．innd z ：

By mutiplying（opuations（ $1 . i$ ）in order by x, y, z and adding，and subtating the result from wive（ 14 ），we whan

$$
\begin{equation*}
\left(.1 h i-k^{2} l\right) h=0 . \tag{16}
\end{equation*}
$$

Aho．We combining the tirst two of（15）we have

$$
\begin{equation*}
\because h^{*} \|,!l i=0 . \tag{17}
\end{equation*}
$$

From（17）wo hate either $k=0$ or $!=0$ ．Taking first the comdition $y=0$ ，but $k \neq 0$ ，from（ 16 ）and（ 15 ），

$$
x=\frac{a l i}{k^{2}} \quad z=\frac{\gamma l_{1}}{k^{2}}
$$

Whencer

$$
l=\frac{h^{4}}{a^{2}+\gamma^{2}}
$$

 the inserat of the wrex of the conte and is the perint l of the diacasxion on pagre 2th．
（＇msinde mow the solmtion $R=0$ of equation（17）．From（1．i）
 therefore a singular print，the inserse of the seretina of the rant

 －Hfane（11）is thell a riner suffar．
 an！／：ゆ゙ minimum lims．

 intmity. These mome ernemal sufates will he matiot in the next - ection.

EXERCISES

3. Pown that the two limes in whirl the phane of the twormation

 lime ot antitur.)

 manit! a a denthe rame.

If $u_{0}=0$. equation (1) is a gencral of the third degree and represents a conbic surfare paswing thenght the imaginary cirede at intinity.
 $u_{0}=0$ and z_{1} is identically zoro. The equation then represents a quatrix surface or even a phane. These cases are impertant only as they arise by inversion from the genemal cases.

In ofler to stady the effeet of inversion on the eyelded we may take the centere of inversion at the origin. sine the form of equation (1) is mathered be trasformation of coiordinates. Simblan insersion pretures an cquation of the same form, which is of the fometh degree if u_{2} contains an ahsolnte term and of the third degree if u_{2} dees not contain the absolnte term bint does contan linear terms. In the former ease the origin is mot on the surface: in the laterer case the origin is on the surface but is not a singular peint. Homee

la genemal the "grlide will not hater a singular peint. If it does we may take it as the orgin. Then in equation (1) the ahsolute term and the terms of tirst order in "asisphear. Be insersion from the origin there will then be no terme of the fometh or the third degree. Hemee the cugtide with "simululer puint is the imerose of' "
 surfiture is a celyclide with at learet ane singular pmint.

Comsider mow at cyelide with two singular peints A and f; which dor net hie on the same minimmen lime. If we invert frem of the "relide beoomes a platrie surface with a singular perint at h^{\prime}, the

 is a reyrlite with at loust trex, virumelar pmints.

We hate shown in sil\% that a Dupin's ugelide of the fourth ower has in gencral lour simgular !uints. We shall mow powe
 fuints is " Impiniss aypride.
 by minimm lines, sume that is an impessible contigumation. Wi.

 lil) ate minimum limes. Hente ('/) is Hat a minimam lime.

EXERCISES

$$
\left.111^{2}+y^{2} r^{2}+\pi_{1} r^{2}+y^{2}\right)+y_{1}=0 .
$$

 -imer, is a homentar ymath.

（HAP＇TER XVI

PENTASPHERICAL COÖRDINATES

117．Specialized coördinates．Pemtaphuriwal wimetinates are hased

 of real dixame．This hrings imw mphasis the fat that pemat

$$
\begin{equation*}
\xi_{1}: \xi_{n}: \xi_{:}: \xi_{1}: \xi_{1}\left(11^{2}: 11: 111: 11: 1: 1\right. \tag{1}
\end{equation*}
$$

and satifying the fombanmal matin

$$
\begin{equation*}
\xi-\xi-\xi \quad \xi \xi=11 . \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \rho \xi_{1} \quad r_{1}-i r_{0} \\
& \rho \xi_{2}=r_{0} \\
& \rho \xi_{:}, r_{:} \\
& \rho \xi_{1}=r_{1} \\
& \rho \xi_{=}=-\left(r_{1}+i r_{3}\right)
\end{aligned}
$$

whemer

$$
\begin{equation*}
\omega(r) \quad r_{1}^{2}+r_{2}^{2}+r_{1}^{2}+r_{1}^{2}+r_{3}^{2} \tag{i}
\end{equation*}
$$

 intinity am 1 1", 11: 0: 1 : .

 are casily s.e.t tw lo.

 pウills

$$
\left.r^{2}-\ddot{-r} r_{1}+r!+r!+r_{1} n_{1}+r!\right)
$$

$$
(i)
$$

$$
\text { (.r: i.r } 11!\text { L Li!. })
$$

Which is the sathe ar

$$
17
$$

$$
\begin{aligned}
& \text { (1)(.1.4) } \\
& \text { (1. + i., } 14+1.1 .)
\end{aligned}
$$

$$
\begin{align*}
& \text { p.r: } \xi_{1}-\xi_{;} \sigma\left(11^{\prime 2}-1\right), \\
& \rho \cdot r_{2} \because \xi_{-} \sigma(\because 1 / .) \\
& \text { p.r: } \because \xi_{:} \sigma(\because(1 /) \text {. } \tag{1}\\
& \text { p.ri } \because \xi_{i} \sigma(\because(1), \\
& \text { p.r: } \left.\quad i\left(\xi_{1}+\xi_{i}\right)=\sigma i(1) 1^{2}+1\right) \text {. }
\end{align*}
$$

The formala (i), thes derived for real perints. will be taken as the defintion of distamere between all kinds of pants. From this it appeats that d is intinite when and only when ont of the peints
 "t pmints at infinit! is seient by the equation $r_{1}+i r_{0}=0$.
since the coibrdinates of all points satisfy ($\overline{\text { o }}$), we have for 1 wints at intinity $r_{1}+i r_{5}=0$ and $r_{2}^{2}+r_{3}^{2}+r_{4}^{2}=11$. Therefore the point 1: 0: 0: 0: i is the only real point at intinity. The nature of the maginary locus at infinity will apped later.

 equation is

$$
\begin{align*}
& {\left[\because y_{1}+\left(y_{1}+i y_{5}\right) r^{2}\right] r_{1}+\because y_{2} r_{2}+\because y_{1}+r_{3}+y_{1} r_{4}} \\
& \quad+\left[\because y_{5}+i\left(y_{1}+i y_{3}\right) r^{2}\right] r_{3}=1 . \tag{1}
\end{align*}
$$

This is of the trpe

$$
\left.a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}+a_{4} r_{4}+a_{3} r_{3}=1\right)
$$

where

$$
\begin{align*}
& \rho \prime_{1}=-!_{1}+\left(!_{1}+i!_{3}\right) r^{\prime 2} . \\
& \rho \prime_{2}=-!_{2}, \\
& \rho \prime_{3}=-!_{3} \\
& \rho \prime_{1}=-!_{1} \\
& \rho \prime_{5}=-!_{3}+i\left(!_{1}+i n_{3}\right) r^{2} .
\end{align*}
$$

From these equations and the fumbanmatal ratament! $=0$. we have

$$
\rho \cdot{ }^{\prime \prime}-^{-1 . .} \quad, 1 \text {, }
$$

$$
\begin{aligned}
& r^{2}=a_{1}^{2}+a_{2}^{2}+\pi^{2}+a^{2}+a^{2} \\
& \left(1_{1}+i_{i s}\right)^{2} \\
& \rho ._{1}=H_{1}-\stackrel{I_{1}+i n, r_{1},}{\ddot{2}} \\
& p \prime_{2}={ }^{\prime}= \\
& p!!_{1}={ }_{1} \text {. } \\
& \text { p!. ", } i^{\prime \prime-i n} \because \\
& \because
\end{aligned}
$$

It is convenient to represent by $\eta(1)$ the mameratar of or in（ t ）： that is，

$$
\eta(1)=1_{1}^{2}+1_{2}^{2}+1_{i}^{2}+1_{4}^{2}+1_{i}^{2}
$$

W：hatre then，the folluwing pasese of epheres：

 the rathes of the sphere is timite．hat neither is meeresarily real． The sphere dons not ematain the real point at intinity．
 is intinite．The cemter is the real frint at infinity．Since a plane is the limit of a shere with center reedenge to intinite aml ratins inmeasing withom limit，we shall eall this loents a plant．＇this

 $a_{2}^{2}+a_{2}+4_{4}^{*}=0$ ．By repetition of the familiar aremment of analyti－ at geometry this maty be shown to repmesent a phate．
sinco this case thefers from the previons onte escemially in that

 tains bu other real peint．＇Ther splere down mot matain the reat frint at intinity．

 intintit．＇lhe equation of the ghere maty le writern

The hens at infinity is, as we hate seen, $r_{1}+i r_{5}=0$. This comes muler (ase II, subase ${ }^{-}$, and is therefore a perial phane with its
 phon, whower antor is ther merl print at intimity.
119. Angle between spheres. The angle hetwern tworeal proper -pheres is copat or suphementary the thagle hetween their ratio at any peint of intersection. Fon prexisin we will take as the amme that one which is in the triaghe fomen be the radii to the peint of intersertion and the line of centers of the spheres. If θ is this angle, ot the diestane between the eenters, and r and r^{\prime} the radii, then

$$
r^{2}=r^{2}+r^{\prime 2}-\ddot{\prime} r^{\prime} \operatorname{ros} \theta \text {. }
$$

If mow the equations of the two spheres are

$$
\Sigma r_{1} x_{1}=0 . \quad \Sigma \mu_{1} r_{1}=0 .
$$

 sriver
whemer
 inge in real peints. We take it as the definition of lhe anghe hetwen any two shores. The stment may shew that if one or beth of the two splueses bexmes a real plame this detintion of angle agrese with the bisial me.

 li, … the whine sylume

EXERCISE

 fortional to the asomes of the angles mater the there whth the

 in (artestan memetry.
120. The power of a point with respect to a sphere. If in the renter of the sphere

$$
\underline{\Delta} H_{1} r_{2}=0,
$$

 the reant :

We shall phare

 "f the distane from the print 4 , tw the renter of the ephere Foll nther fases rymation (\because) i- the detintion of the fomm.

From (\because) may be oltamed the impertant formolat for at monserial sphere:

$$
s^{\prime}=\left(r^{\prime}-r\right)\left(I^{\prime}+\cdots\right) \quad l^{\prime} . l\left(I^{\prime}+r\right)
$$

$$
\stackrel{N}{r}=1 \cdot 1\left(\begin{array}{r}
\prime \prime \\
r
\end{array}+1\right)
$$

Now let $($ recede $t 0$ infinity along the line $P(C$. The ephere becomes a plame perpenticular tor P. But the limit of $\frac{P^{\prime}}{r}$, as r leromes intinite and $n_{1}+i n$, appoaches zeros is 1 . from (1). Thesefore

$$
\operatorname{Limit} \frac{s}{r}=2 P .
$$

where $P .1$ is the perpendienlar from P the the pane. This result may be the ked by replating x, $\boldsymbol{y}_{\mathrm{i}}$ and using familiar theorems of C'artesian genmetry.

The equation of any nomsuecial where may be writem so that $\eta(1)=1$. The "quation is then said to be in it: mirmell fiorm, and the demminator $u_{1}^{*}+w_{2}^{2}+n_{i=}^{2}+u_{4}^{*}+n_{0}^{2}$ disappears from equation ($: 3$).
121. General orthogonal coördinates. Let us make the linear sulstitution

$$
\begin{equation*}
\rho \cdot r_{1}^{\prime}=a_{41} r_{1}+a_{12} r_{2}+a_{13} r_{3}+a_{44} r_{4}+a_{15} r_{i ;} \quad(;=1, \ddot{3}, 3,4, \quad i) \tag{1}
\end{equation*}
$$

in which the deteminamt, den's not vanish. Then to atys of ratios. $r_{\text {a }}$ wresponds one set of ratios r_{1}^{\prime}. and sinm the quantitiss r_{0} sat isfy a quadratic relation $\omega\left(r^{\prime}\right)=0$, the quantities . r_{1}^{\prime} satisfy ancther quadratic relation $\Omega\left(r^{\prime}\right)=9$.

Then values of r_{1}^{\prime} which satisfy $\Omega\left(r^{\prime}\right)=0$ eormerpent tw one atm only one set of rates of x, which satisfy $\omega(r)=1$. Therefore x_{1}^{\prime} can be taken as coürdinates of a point in sume and are the most genmeal pematipherical cördinates.

Thur yhure

$$
\sum^{\prime}{ }_{1,}, r_{1}=0
$$

wher.
 quatman andition $\mathrm{II}\left(\right.$ a' $\left.^{\prime}\right)=0$.

 the vatiotionl be than courdinatus.

 the - perial. -inne. if it were its center would lie on each of the wher

$$
a_{1}^{2}+8_{2}^{2}+12^{2}+a_{i}^{2}=1 .
$$

$$
\begin{equation*}
p \cdot i_{1}^{\prime} \quad{ }_{i_{2}}^{r_{1}} \tag{t}
\end{equation*}
$$

$$
n_{11} n_{11}+n_{12} n_{2}+n_{12} n_{2,3}+n_{24} n_{11}+n_{2, i n} n_{2 ;} \quad 11
$$

for all pation valles of i and $h, i=h$
 it follons that

$$
\begin{equation*}
a_{2}^{2}+n_{2}^{z}+i_{3}^{2}+n_{1}^{2}+i^{2} \quad 1 \tag{i}
\end{equation*}
$$

in！

$$
n_{1} n_{1}+n_{2} n_{2}+n_{2} n_{2}+n_{1} n_{1}+n_{1} n_{0} \quad 0 . \quad\left(i=k_{i}\right) \quad(i)
$$

$$
r_{1}^{\prime}+r^{\prime}+r^{\prime}+r_{4}^{\prime}+r^{\prime} 0 \text { O }
$$

$$
u_{1}^{\prime 2}+1_{3}^{\prime}+n^{\prime 2}+1_{1}^{\prime}+1^{\prime 2}-11 . \quad(!)
$$

 いいい intい

$$
\therefore p\left(n_{1} i_{1}^{\prime}+n_{2}^{\prime} 121+n_{4} i_{1}, 1\right) \quad \text { (11) }
$$

， 1.

$$
p_{i} \quad 1
$$

where if any - phere $r_{i}^{\prime}-11$ is a plane the comesponding roiordinate r_{k}^{\prime} is foro, an in fati hapmen when $r_{k}=x$.

The mpation $x_{4}+r_{5}=19$ for the locus at infinity becomes, finn (11) anl (11).

$$
\begin{equation*}
\Sigma_{i}^{r_{i}^{\prime}}=0 \tag{1:}
\end{equation*}
$$

 tom vaninher limal ($1:$) .
 berommes
su that the eqpation of a spheqe with eenter y_{2} and radius $\%$ is

$$
\therefore \pm!!^{\prime} r_{1}^{\prime}+r^{\prime \prime} \triangle \frac{I_{1}^{\prime}}{r_{1}} \sum_{r_{1}}^{x_{2}^{\prime}}=0 .
$$

Illentifying this with Eu'r: 0

$$
\begin{align*}
& \Sigma^{1}=0 . \tag{1~}
\end{align*}
$$

 (1:9). We Gham the followime fommatas for the ramber and the +enter of the yhutr (1ti):

$$
\begin{align*}
& \frac{\Sigma^{\prime \prime}}{\left|\Sigma_{i}^{\prime \prime}\right|^{\prime}} \\
& \sigma \|_{i}^{\prime} \quad u_{i}^{\prime} \quad \because \iota_{i}^{\prime \prime},
\end{align*}
$$

EXERCISES

$$
\rho r_{1}^{\prime}=n_{11} n_{1}+n_{12} r_{2}+n_{1}+n_{11} r_{1}, 1 \text {, (1) }
$$

 リ(11) - 11 is ahor invariatht.

 tistinguished.

 fommation is athatyly it is a collint allong.

 metrial hamstmmation.

$$
\begin{array}{ll}
\mu \xi & h \xi \\
\mu \xi & \xi
\end{array}
$$

 of mädinatm.
('onsiter mow the entaral ease of a real tamspomation hy which the real puint at intinity $/$ is tranformed into at reat peint .1 and
 sime the tamsformation is real a camot be at intinity. Let this

 point at intinity are of a differem 19 ge . An example of surh a tranafomation is

$$
\begin{aligned}
& p r_{1}^{\prime}=-r_{1} \quad-\ddot{r}_{3} \quad-i r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \rho \cdot r_{4}^{\prime}=\quad \because r_{4} \\
& p \cdot r_{3}^{\prime}=i r_{1}+\because r_{2} \quad-r_{i} \text { 。 }
\end{aligned}
$$

EXERCISES

123. Relation between pentaspherical and Cartesian coördinates.

$$
\begin{align*}
& p r_{1}=r^{2}+\eta^{2}+z^{2}-1 \quad r^{2}+y^{2}+z^{2}-r^{2} . \\
& \rho \cdot r=\because \quad \because r \\
& p, r=\ddot{\prime} \quad \because \quad \ddot{\prime \prime} . \tag{1}\\
& p r_{i}=\ddot{=} \quad=\ddot{\because} \quad- \\
& p r_{j} \quad i\left(r^{2}+!^{2}+z^{2}+1\right)-i\left(r^{2}+y^{2}+\because^{2}+t^{2}\right) \text {. }
\end{align*}
$$

 intinity $1: 10: 11: 11$:

 texith maintinates heynations of the thath
124. Pencils, bundles, and complexes of spheres. It 11 inm

$$
\begin{equation*}
\Sigma_{1,1}+V, 1 \tag{11}
\end{equation*}
$$

reppestats a shere themgh all peonts common to the two spheres and intersecting neither in any other point. Such spheres tomether form aly lath of apheres.
 xiste cutiol!! :t'plathes.

This follons from the faet that the eomblion that equation (1) -hembl be satistied by the corodinates of the real puint at infinity amsists of an equation of the finst degree in λ, maness both $\Sigma_{a_{2}}=0 \mathrm{amd} \sum b_{1}=0$ are satisfied by those coürdinates. In the latter ease all the pheres (1) are planes.

 *purial sphtres.

The combliton that (1) represemts a special sphere is

$$
\left.\eta\left(11+\lambda l_{1}\right)=\eta(11)+\lambda \eta\left(1, l_{1}\right)+\lambda^{2} \eta(l)-1\right)
$$

which detemames two distinet or equal valmes ol λ maless $\eta(\pi)=0$. $\eta(h)-11, \eta(1, h)=10$. The latter ease ocelors when the two shteres
 ther other.
 aatly prosed by the stmbent.
 -athe lemeil. the equation

$$
\sum\left(u_{1}+\lambda u_{1}+\mu_{1}\right) r_{1}=0
$$

 gheres. The relations between ortheromal promeib and bamelles

If ป

$$
\Sigma\left(r_{1}+\lambda l_{1}+\mu_{1}+\nu_{1} l_{1}\right) r_{1}=1
$$

EXERCISES

 whim rati a eriven ophere onthumbally
3. Prose that the athere umber whirh a shate cht ath where it a
 of the bumble.

 When is the prohern imbermanate:'

 Hue eynations

$$
\begin{equation*}
\rho \cdot i_{1}=t_{1}+\lambda z_{1}+\mu t \tag{1}
\end{equation*}
$$

 saty and sutheriont that

$$
\sum\left(y_{i}+\lambda z_{2}+\mu t_{2}\right)^{2}-11
$$

$$
\begin{equation*}
1 \lambda+l i \mu+1 \lambda \mu-11 \tag{i}
\end{equation*}
$$

Therfore (1) maty le wation
t $]^{\circ}$

$$
\begin{aligned}
& \quad r_{1} \quad 4+\lambda z_{1} \quad l i+1 \lambda^{t} \cdot \\
& \mu r_{0}=l i n_{1}+\left(1 n_{1}+1 z_{1} \quad 11, \lambda+\left(z_{1} \lambda^{2} .\right.\right.
\end{aligned}
$$

 - tatight lime.

If (artesimn maindinates are substituted for x, in (i) the equation is of the ${ }^{-1 / t h}$ arder and of the form

$$
u_{1,}\left(r^{2}+y^{2}+z^{2}\right)^{n}+u_{1}\left(r^{2}+y^{2}+z^{2}\right)^{2 n-1}+\cdots+u_{1}+u_{11}=0,
$$

 $\left(x^{2}+y^{2}+z^{2}\right)$ as atactor: The surface therefore (ontains the eirele at intmity ant as an n-fold emwe if $u_{0} \div 0$. In the (artexian
 calar pronts at intinity connt $\because n$ tinnes and do not aprear in the Wratcolialatyonetry
'The equation in λ is

$$
\left.I_{n}^{n+}\left(y_{1} \cdot y_{2} \cdot y_{3} \cdot!_{4}\right)+\lambda i^{n} \sum_{!!}^{\prime}\left(y_{1}!y_{1}+B z_{i}-1 t_{1}\right)+\cdots=0 . \quad \text { (}\right)
$$

Now if, y_{1} is on the smface then $f(y)=0$ and $\Sigma y_{6} t_{0}=0$, the

 we hate

$$
I \sum_{(!}^{4}=-A \sum_{i!}^{t} t_{i}=11
$$

Whinh is the same as

$$
\begin{equation*}
\frac{\Sigma y_{1}^{\prime}}{\Sigma y_{1}} \frac{\Sigma!_{1}^{\prime}}{\Sigma!_{1}^{t}} . \tag{}
\end{equation*}
$$

 met if $z_{\text {a }}$ and tare both om the same shere of the pencil

$$
\begin{equation*}
\Sigma\left(\frac{1+}{1!}-p y_{2}\right) \cdot r_{2}=11 . \tag{!}
\end{equation*}
$$

Any - phere of this permil has aromdingly the property that ans

 $1!$

126. Cyclides in pentaspherical coördinates. ('onsider the surfare

$$
\sum_{1,} u_{1} r_{k}=11 \quad\left(d_{k} \quad a_{t k}\right) \quad \text { (1) }
$$

From
 Wre shatl therefore limit whedses here the the general ease in whith the sumblar fuints th not exist. Sime then, the equations it $=11$

It is a the rem of atgetrat that in this atse the quathatio form maty be redned by a limear shtostitution th the form

$$
r_{1} x_{1}^{2}+c_{2} r_{2}^{2}+c_{0} r_{3}^{2}+c_{4} r_{4}^{2}+r_{0} r_{0}^{2}-11
$$

 a) (r) is

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{0}^{2}=0
$$

We shatl therefore assume that the equation of the evelite is in the form ($\because(\ddot{)}$) ant that the conirdinates are onthergmal.

Fromernation (\because) it is whioms that the equation of the surfane
 bat this entation is equivatent themersion on the sphere x - 0 . H.6.1...

The perneil of tangont gheres the the reliele at ant print it in,

$$
\begin{equation*}
\underline{\Sigma}\left(r_{1}+\lambda\right) y_{i} \cdot \quad 10 \tag{t}
\end{equation*}
$$

Hemere in wher that at piven pheme

$$
\begin{equation*}
\underline{ \pm} r_{i} x_{i} \tag{i}
\end{equation*}
$$

 A am!!!, in that

$$
\rho \prime,(\cdots, \lambda)!\quad \text { (i) }
$$

This giver the three romelitions
of whith the first is a consequence of the last two. The last two express the fact that the equation

$$
\sum \frac{a_{1}^{2}}{c_{1}+\lambda}=0
$$

has eynal roots. This imposes a eondition to be sat istied in order that (i) shombl be tangent to ($\boldsymbol{2}$).

When λ has been determined from these equations, equations (i) Wetemine y_{1} in general without ambignity. Exerptions oceur if $\lambda-r_{k}$, where ${ }_{i}$ is any one of the eoefficients of (\because). In that ease We have in (b) $a_{k}=0$, and y_{k} camot be detemined from ($t i$). Inowwer, if the other four coortlinates y_{i} are determined, It has two values of opposite sign but equal absolute value, determined from the fundamtatal relation (\because). The eorresponding sphere (i) is (rythogonal tor $x_{k}=0$ and tangent to the cyelide at two points which are inserse with respect to $x_{k}=0$.

The value of λ maty be taken arbitrarily as - $c_{k}:$ whence $a_{\lambda}=0$. The values of $n_{i}(i \neq k)$ must then be determinet from (7) with $\lambda=-i_{i}$. Each of the first two equations contain an indeterminate term. The latst equation hecomes

$$
\begin{equation*}
\sum_{i a_{i}-c_{k}}^{u_{i}^{2}}=0 . \quad(i \neq k) \tag{1}
\end{equation*}
$$

Ther enefliajents of ($\bar{\sigma}$) satisfy two equations, therefore, and the sheres form a family of spheres whieh is mot limear. In the family a phere ean be fommd which is tangent to the egelide at any given print. Fon if $\lambda=-{ }^{6}$, and y_{i} is any point on the velite. equation (if) will detommine ", and the a's will satisfy (9), as has been shown. The spheres of the family therefore "onelop the ryelide.

 e atmelria vertitare.

Take. for example. the series for whioh $\lambda \ldots \operatorname{lam}_{1}$ atm. If
 $\stackrel{1}{\square} 1$,
and

$$
\mu_{i}=\sigma\left(y_{i}-y_{1} r_{i}\right): \quad(r=1)
$$

whenee

$$
\rho^{\prime \prime} t_{k}=\frac{\|_{k} r_{k}}{r_{k}}!_{1} r_{1}
$$

and equation (0°) beenmes
which is the equation of the berns of the cemtere of the pheres of the family mater eomsideration.

By (t), 尺 121, equation (10) may lne written

$$
\begin{equation*}
\frac{\sum_{i}\left(s_{k}-s_{1}\right)^{2}}{\left(r_{2}\right)}=11 \tag{11}
\end{equation*}
$$

 equation (11) is of the seemod degrex, and the theorem is proved.

Wia may sman in the following theotem:

I surfare whinh is its own inserse with reated to a - phere is

EXERCISES

1. If a_{2} is one of the fire deferents of the erelide and x_{k} the eorresponting dimetrix ephere, prove that the terabedrom whose verties are the renters of the other five dirempares is self-ompugate, both with resperat to (ℓ_{k} athl with respert to S_{k}.
2. Prove that on the eyelide there are ten families of dirdes, two familes rerresponding to eath of the five modes of gromerang the rembite.
3. The fonat curve of any surfaer being defined as the lowes of the renters of ginat spheres whieh are doubly tangent to the surfare, prese that the erelide has five foe el eneres, eath heme a sphere-tuadrie formed hy the interseetion of a deferent hy the woresponding direetrix sphere.

REFERENCES

For more reating along the lines of Part III of this bow the following referemes are sisen. As in Part Il, these are mintended to form a momple hihliomraphy or to contain jomenal reformens.

General trentis.s

(iorlt mul spheres:
 ('yrlides:

Bommer. Phemtahthertit. Trubner.
 A. Hermann.

1) hathllume.

(THAPTEA XVII

LINE COÖRDINATES IN THREE-DIMENSIONAL SPACE

127. The Plücker coordinates. The stmairht lines in pace form a simple example of a fomphlimensimal extent, sime a line is deter-
 in wemeral be put in the form

$$
\begin{align*}
& r=r z+\rho \tag{1}\\
& y=s z+\sigma
\end{align*}
$$

and the quantitis (r, s, ρ, σ) mat be taken as the roüplinatme of the lint. Nhere smatery is whatad, howerer, by the following device.

From mpations (1) wr hate

$r!\eta-s r-r \sigma-\rho s$,	(\because)
$r \sigma-\rho s-\eta$.	(\therefore)

and we may jater $\quad r \sigma-p s-\eta . \quad$ (\because,

 may arily complat.

 and y_{i}. the cenirdinates of the time must be invarimet with reperet th the substimituns

$$
\rho \cdot r_{1}^{\prime}=\lambda_{1} r_{1}+\mu_{1}!_{i}, \quad \rho!\prime_{1}^{\prime}=\lambda_{2} r_{1}+\mu_{2} \prime_{i},
$$

Simple experesoms fultilling these combitims are the ratios of
 the experexims

$$
r_{1 k}=r_{1} l_{1}-r_{k} \mu_{1} .
$$

Sinere $p_{1}=-p_{1,}$, there are six of these quantitios: namely,

$$
\begin{aligned}
& r_{1}=r_{1} \mu_{2}-r_{2} \mu_{1} . \\
& l_{11}=r_{1} l_{3}-r_{3} \mu_{1} . \\
& r_{14}=r_{1} y_{4}-r_{4} \mu_{1} \\
& l_{i 1}=r_{r} \mu_{4}-r_{i} H_{1} . \\
& r_{42}=r_{4} \mu_{2}-r_{2} y_{4} \text {. } \\
& r_{2}=r_{2} \mu_{n}-r_{2}
\end{aligned}
$$

which are emmederl hev the mbation

$$
\begin{array}{llll}
r_{1} & r_{2} & r_{3} & r_{4}^{\prime} \\
u_{1} & u_{2} & n_{3} & n_{4}-2\left(r_{12} l_{3}+r_{12} r_{12}+r_{11} r_{3}\right)=0 \\
r_{1} & r_{2} & r_{3} & r_{1} \\
u_{1} & r_{2} & n_{3} & u_{4}
\end{array}
$$

It is whems that thang straght line cormenome one and only ore set of ratios of the quantitione f s.
 ular prints of the line used of form p_{2}. If in partiontar we takn

 when the lime meth the other meiremate phame. wh hate an the

$1)$	$1 \prime:$	${ }^{\prime \prime}$	\prime_{14},
μ_{12}	11	$1 /$	ノ:
${ }^{-1} 1$	1 '.	11	11.
1 ':	\prime	'',	${ }^{\prime \prime}$

 lime is exactly the relation (t).

 wilh (f).

128. Dualistic definition. I swatht lime maty he detine ! hy dhe
 lat bullue

$$
\begin{align*}
& \eta_{1:}=11_{1} "_{:} \quad "_{;} H_{0} \\
& \eta_{14}="_{1} M_{1}-"_{i} r_{1} \tag{1}\\
& \eta_{i}=\| n_{4}-n_{i}{ }_{n}
\end{align*}
$$

$$
\begin{aligned}
& t_{n}=u_{n}-n_{n}
\end{aligned}
$$

Whilh are momerder he the relatim

$$
\because\left(y_{12} 1_{4}+t_{12} t_{+2}+t_{1} t_{2}\right)=11
$$

 (\because) : her Mane

$$
\begin{equation*}
1+r_{-}+1+y_{1}=1 \tag{11}
\end{equation*}
$$

passes therogh the line η_{i}. If r_{i} and $y_{\text {a }}$ are two points on the line we hatere berides chation (t) , the equation

$$
y_{12} y_{2}+y_{12} y_{3}+y_{1+1} y_{1}=0 .
$$

From (1) and (\bar{i}) we hate

$$
y_{12}=\frac{\eta_{13}=-I_{14} .}{l_{34}}=\frac{l_{2}^{\prime}+2}{} .
$$

Simikily, we may show that

We may, accordingly, use only one wet of quantities:

$$
\begin{aligned}
& r_{12}=\rho l_{12}=\sigma \eta_{3 ;}, \\
& r_{13}=\rho_{l_{12}}=\sigma \eta_{12}, \\
& r_{14} \quad P_{114}=\sigma_{123} . \\
& r_{a ;} \quad \rho l_{1}^{\prime}=\sigma \eta_{12} . \\
& r_{12}=P l_{1: 2}=\sigma_{1,3}, \\
& r_{:}=\rho \gamma_{\because:}=\sigma \eta_{14},
\end{aligned}
$$

bound hes the fumdamental relation

$$
\omega(r)=2\left(r_{12} r_{3 ;}+r_{13} r_{42}+r_{14} r_{23}\right)=0 .
$$

129. Intersecting lines. Two straght limes. one determined, hy the printse r, and n, and the wher be the perims r_{i}^{\prime} ant y_{i}^{\prime}, interseret when the form prints lie in the sallur phane, and only then. The newsang and sutherent comblitur for this is

$$
\begin{array}{lllll}
r_{1} & r_{2}^{\prime} & r_{2}^{\prime} & r_{4} & \\
u_{1} & r_{2} & u_{:} & u_{1} & 0 \\
r_{1}^{\prime} & r_{2}^{\prime} & r_{i}^{\prime} & r_{1}^{\prime} & \\
u_{1}^{\prime} & u_{2}^{\prime} & u_{:}^{\prime} & u_{i}^{\prime} &
\end{array}
$$

whith is the same an

four phanes pass thromorle the smme point, amd on! fleth. 'The necessary and sutheiont comblition for this is
which is the same as

$$
r_{12} r_{34}^{\prime}+r_{1: 1} r_{12}^{\prime}+r_{14} r_{3}^{\prime}+r_{44} r_{12}^{\prime}+r_{1} i_{1}^{\prime}+r_{1} r_{14}^{\prime}=\text { (} \quad \text { (} \quad \text {, }
$$

whieh is more complatly written as

$$
\omega\left(i, r^{\prime}\right)=\Sigma_{i 2}^{\prime}\left(r_{2!}^{\prime}=11 .\right.
$$

130. General line coördinates. ('msilme my six gnamtition defined as linear combinations of the six phantites in. That is. let

$$
\rho \cdot r_{1}=r_{11} r_{12}+r_{12} r_{13}+r_{12} r_{13}+t_{14} r_{2}+{ }_{21} r_{12}+d_{1, n} r_{2}
$$

 Ans mot vanish. 'Then the rehation leeween the quantition foral

 into a thadratie relation of the form

$$
\xi(r) \text { 上 } 1_{1, r}, r_{k}=0 . \quad\left(n_{i}=n_{y}\right) \quad(\because)
$$

$$
\xi(r, r) \perp, \quad \underline{\xi}
$$

'flempleme $\left.\quad(r) \cdot \lambda i^{\prime}\right) \quad \xi\left(r+\lambda, r^{\prime}\right)$ 。

By equating like powers of λ we have

$$
\omega\left(r, r^{\prime}\right)=\xi\left(r, r^{\prime}\right)
$$

 mont. In,!" be thtern we the raïrdimates ut "t lime in sputier in surh a memure thet the rquation $\xi\left(x, x^{\prime}\right)=0$ is the merswer! end sutficient comblition firr the intersertion of the tuon limes x_{i} atml x_{1}^{\prime}.
()f partionlar importance are eobrdinates the to Klein, to which we shatl refer as hlein omedimetes. These are obtained by the substitution

$$
\begin{aligned}
& \rho \cdot r_{1}=\rho_{12}+\rho_{34}, \\
& \rho \cdot r_{2}=\rho_{13}+\rho_{42} \\
& \rho \cdot r_{3}=i\left(\rho_{13}-\rho_{42}\right), \\
& \rho \cdot r_{4}=\mu_{14}+\rho_{23}, \\
& \rho \cdot r_{5}=i\left(\mu_{12}-\rho_{34}\right), \\
& \rho \cdot r_{6}=i\left(\mu_{14}-\rho_{23}^{\prime}\right) .
\end{aligned}
$$

The fundamental relation is then

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+x_{4}^{2}+r_{5}^{2}+r_{3}^{2}=0
$$

and the condition for the intersection of two lines is

$$
r_{1} y_{1}+r_{2} \prime_{2}+r_{3} y_{3}+r_{4} y_{4}+r_{3} y_{3}+r_{1} y_{3}=0 .
$$

131. Pencils and bundles of lines. I. If t_{i} "md b_{1}, 1 ro two intorserting limes, then $\rho . r_{i}=H_{1}+\lambda l_{i}$ is "t lime of the pemoil thtermined b!!

The hepotheses are

$$
\xi(1)=0, \quad \xi(h)=0, \quad \xi(1, l,)=0 .
$$

Then:

1. x, are the eriondinates of a stragh line. simer

$$
\xi(. r)=\xi(1 f+\lambda l)=\xi(1)+\because \lambda \xi(1, l)+\lambda^{\prime} \xi(b)=0 .
$$

 and $\xi(1,1)=11$. Thatefore

$$
\xi(l . l) \quad \xi(, 1+\lambda l, l) \quad \xi(1, l)+\lambda \xi(l, l)=1) .
$$

 in the phane of＂，and band pases through their internemtion

 mat in the phame of＂，aml 1 ．Wir am demmane λ an that

$$
\xi(, h)=\xi(\ldots, h)+\lambda \xi(1, h) \quad 1) .
$$

 $\xi(: 10)=1$ ．Thum：

1．r_{i} ane the eniminates of sume line since $\xi(\%)=1$ ．
 if $\xi(1,1)=0, \xi(h, 1)=11$ ，and $\xi(1,1)=11$ ，than $\xi(, 1,1)-\xi(\ldots$, $+\lambda \xi(h, d)+\mu \xi(\cdots,)^{2}=0$ ．Therefore \because pasme thongh the inter－

$$
\begin{aligned}
& \xi(1 \cdot!)+\lambda \xi(\prime \cdot!)+\mu \xi(\cdot:!)=11 \\
& \xi(1, h)+\lambda \xi(1, h)+\mu \xi(\prime: h)=11 .
\end{aligned}
$$

The thentern is therefore promet．

The froll is the amme an for themem 11.

 ＂hath interants all of the wher

EXERCISES

1. Prose that the cross mater of the fome points in which a straght line meets the fom phanes of any tetrahedron is math to the eross ratio of the form phanes throngh the line amd the vertices of the tat tahladan.
2. Prowe that there are two and only two lines which intersed fome siven lines in sumeral pesition.
3. Prowe that if the roondinates of any fire lines satisfy the six tymations

$$
\lambda \cdot r_{i}+\mu!y_{i}+v r_{i}+\rho s_{i}+\sigma t_{i}=0,
$$

the five lines interseet earh of two fixed lines.
4. Show that if the comelinates of any fome lines satisfy the six "Mnations

$$
\lambda r_{2}+\mu \mu_{1}+v_{1}+\rho s_{4}=0,
$$

any lime which intersects three of them intersects the fourth, and hence the lines are four ermerators of a quatrie surfate.
5. Shew that if the remelmates of threr lines are remmeded ly the six "plations

$$
\lambda \cdot r_{1}+\mu y_{i}+y_{i}=0,
$$

any line which intorserts two of then interserts the thind. Thence dedure that the limes are there limes of a pemeil.
132. Complexes, congruences, series. A line ramplex is a threedimensional extent of lines. It may be hat is not moersarily, defined be a single equation whifh is satistied hy the roïrdinates "f the lines of the romplex. The meder of a romplex is the momhere of its lenes whinh lie in an athitary plane and pass throneh an arhitrary point of the phane: that is. it is the momber of the limes of the complex which helomer to an anhitary fencol.
 In. defind by two simmlameons equations in lime moindinates and
 "f a congrumer is the momber of its limes which pasi through an
 arbitmay Jlatr.

An equation $\quad f_{1}\left(r_{1}, r_{0}, r_{i}, r_{i}, r_{4}\right)=11, \quad(1$,

 (ommpes (1) when λ satintion the mation
whirly is of the mh decrem in λ.

I simple example of a lime e.mmples is that whath is tompmand

$$
\xi(1, \ldots) \quad 11 .
$$

 1.timed by the Iquation

$$
\left.I^{\prime}+I^{\prime}+I^{\prime}: \mu^{\prime}, I^{\prime}+!+1\right) \quad 1 \therefore,
$$

This is not the equation of a shrface since it contans two sets of print roumdinates. If. Howerer. the coindinates y are fixed, (t) beronthes the froint equation of the conte of second order formed be lines of the complex throngh $\frac{y}{6}$.
 and r, and hold r tixed, we obtain a plane extent of seeond chas in u_{2} whinh is intersected by the plante $x_{i}=$ comst. in a line extent chachping a morve of second elatss.

Throngh an arbitury foint in an arthitnary pane gr two lines wif the (omplex (: $\begin{aligned} & \text {) }\end{aligned}$

An example of a line congrathere is that of lines intersemting two fixed lines. It is represented by two simmltameoms equations similar to ($\because=$) It is of the first wher, since throngh any fuint hut one line can bet passed interseeting the two fixed lines. It is of seromd rats, sinte in a fixed plane only one lime van be drawn intrerseding the twor tixed lines.
 a print. This is of tirst order and zerombes. still amother example

An example of a line serges is that of lints whirh interseer there fixed lines and is repuendited hy there linear equations of the

 in spater meets twa lines of the series.
133. The linear line complex. The rquition

$$
a_{1} r_{1}+n_{2} r_{2}+a_{1} r_{3}+n_{i} r_{1}+n_{13} r_{3}+a_{0} r_{6}=0
$$

 An +xample of surly a comples is, as we hate seren, that whish is

 -grectal complex is that the eqnation (1) shonh be equivalent to

$$
\xi(x, y)=9:
$$

that is, that

$$
\begin{array}{ll}
\prime_{1} & , \xi \\
y_{1}
\end{array}
$$

 "flation $\xi_{(!1)}$ ".

 in (: $:$) , Pive a relation of the form

$$
\because(1) \quad 1 .
$$

Wi. sum 川ip as follows:

Nome in detail, het

$$
\xi(, n) \quad \underline{"}_{1, k} y_{1} \|_{k}, \quad\left(a_{k i}=\|_{1, k}\right) \quad(i)
$$

Then millations (\because) arr
from which, tegether with (i), we have

$$
\begin{equation*}
n_{1} n_{1}+n_{2} n_{2}+n_{2} y_{1}+n_{i} n_{1}+n_{i} n_{3}+n_{1} n_{1}=11 \tag{i}
\end{equation*}
$$

Frem (i) and (\bar{r}) we whtidn

$$
\begin{aligned}
& \sum .1_{2} n_{1} n_{2}=1 \text {. }
\end{aligned}
$$

If we hate khem mämbater

$$
\begin{aligned}
& \begin{aligned}
& 17 \because n_{4} \\
& 1
\end{aligned}
\end{aligned}
$$

We may sum this up in the following theorem:

 in

Romming to the gemeal linear complex (1) (epectal or mon-
 thengh P mot in the same plane, then (theom 11 , 5131) any line throngh I has cö̈rdinates $a_{1}+\lambda b_{1}+\mu_{i}$, and this line behnges to the complex when

$$
\sum a_{i} a_{i}+\lambda \sum a_{i} l_{i}+\mu \sum a_{i}=0 .
$$

Eymation (x) is satistied for all values of λ and μ if the there lines μ_{0}, h_{1}, and $\ddot{c}_{\text {, }}$ belong to the complex. Otherwise, assuming that ", whes not belong to the emmpex. we may solve (s) for μ and write the corirdinates of the peint r_{i} in the form

$$
\begin{aligned}
& =a_{i}^{\prime}+\lambda l_{i}^{\prime} \text {, }
\end{aligned}
$$

where at and b, are two definitely detined lines throngh l, and λ is arbitrary. This proves the following theorem:

 were taken as three lines in a phane but mot thongh the same

 to the er, minter.

Tor conllyte the infornation given by thes two theorems w. -hall prove the two following:

points of h. Thromgh (! retes, by theorem III, at peral of lime of the complex of which $P^{\prime}(!$ is evidently one ant $/ 1$ is mot. similarls, through h ereses a poleit of limes of the eomplex of which lat is one and h is mot. These two permeils lie in different platers, for if they laty in the same plate the line h woulit lie in both perneils and lxe at line of the emplex, eontrary to hypothesis. The planes of the pemeits interseet in a line which
 ally print un

The line st brlonge th the eromphex, sinte, by hyouthesis, all limes thromght are lines of the eomplex.

Fu, int The lime sef belomes to the eome flex, sinee it lies in the plane of the peneil with the vertex $\left(\frac{1}{\text { and }}\right.$ phases thengh (!. similarly, the line she behors the themplex.

Therefore we have theotghe the point x, thee lines of the womper which are mot eophantr, since c and h ate mot in the
 the complex. Bint is is any print of ', and sime all lines which intersede form a comples, the thentern is provel.
VI. It all limes of' "plate heslane: tw ther somplete, the momples is sperial amt the plater plesists therelethe the aries of the mentlex.

Lat atl lintes of a plathe m
 phex. Takir h, any lime mot of
 (w) phates throligh ha imberat

F1,, Bi^{7}

(ommeting the wertiens (\because of (rourse, lies in m). Takes, any phane throngh, imersecting y in the line y^{*} and r in the line os.

Thene is a line of the complex, sume be herthesis any line in If belonges the complex. Also q^{*} and is behong the the complex, since earh is a line of a pencil which has been shown to be come peret of himes of the complex. The thee lines don mot pass thromg
 in difterent puints.

Therefore by theorem IV, all lines in a belome to the complex, ant sinces was any phe through and lines whid intersert belong th the complex, and the theorem is prosed.
134. Conjugate lines. Two lines are sail whe wiminutis, of or riprowet pelars, with respect to a line complex when every line of the complex which intersects one of the two lines intersects the wher alse. Let the eqnation of the complex in klein coïrdinates be

$$
\begin{equation*}
u_{1} r_{1}+{ }_{1} r_{3}+u_{3} r_{3}+u_{4} r_{4}+u_{3} r_{3}+u_{6} r_{3}=0 . \tag{1}
\end{equation*}
$$

and let y^{2} and z, be the cö̈rdinates of any two lines. The emblitions that a line x, intersed y, and z_{0} are resectively

$$
\begin{align*}
& y_{1} x_{1}+y_{3} r_{2}+y_{3} r_{3}+y_{4} r_{4}+y_{3} r_{5}+y_{6} r_{3}=0 . \\
& z_{1} r_{1}+z_{2} r_{3}+z_{3} r_{3}+z_{4} r_{4}+z_{5} r_{3}+z_{3} r_{3}=11 . \tag{:'}
\end{align*}
$$

We serk the comdition that any line x_{1} which sationtio (1) and (\because) will satisfy (: $:$). 'This combition is that a grantity λ shall be fomm such that

$$
\begin{equation*}
\rho z_{1}=y_{1}+\lambda \mu_{1} . \quad(i=1, \therefore,: 3,+, i, t i) \tag{4}
\end{equation*}
$$

But y and z beth satisfy the fundamental relation

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}+r_{3}^{2}+r_{0}^{2}=0 .
$$

whell itetime the raimelinates z of the conjugate lime of any line \&.

 ("..nillor
 Hente

 imberminatw. Hane

 metric mathont.

 11.n....

Fran this thenem or from the retations (i) follows at ones:
 intorsort.

 and the plate is callend the perlue of the pmint.

 1har 13.4ntur:

135. Complexes in point coordinates. It is interesting and instruetive to consider the linear complex with the use of point coordinates.

A linar equation in genemal line coürdinates

$$
\begin{equation*}
\sum a_{1} x_{1}=0 \tag{1}
\end{equation*}
$$

is equivalent to a linear equation

$$
\sum_{n^{\prime}, k} p_{k k}=0 \quad\left(n_{1}=0, d_{2 k}=-\prime_{1, n}\right)
$$

in p_{0} coürdinates, and this, agrain, can be expessed as a bithear equation in point coürthates:

$$
\begin{equation*}
\Sigma \prime_{k}\left(r_{1}, y_{k}-r_{k} y_{1}\right)=0 . \tag{3}
\end{equation*}
$$

If in equation (:) we phace y, equal to constants, the equation beeomes that of a phane m of which y_{2} is the puble.

The phame coiordinates of this phame are

$$
\begin{aligned}
& \rho n_{1}=\quad \quad "_{12} \eta_{2}+"_{12} \mu_{1}+"_{14} \eta_{4} .
\end{aligned}
$$

$$
\begin{align*}
& \rho \prime_{8}=-"_{13} y_{1}-t_{53} \eta_{2}+\prime_{3, ~} "_{1},
\end{align*}
$$

$$
\begin{array}{cccc}
0 & "_{12} & "_{13} & "_{14} \\
-"_{12} & { }^{1} & "_{23} & -"_{12} \\
-"_{13}-"_{23} & 0 & "_{1} \\
-"_{11} & "_{12} & -"_{11} & 0
\end{array}
$$

that is. muless
 maindinates. Homee we have a merfication of the fant that in a numperial (omplex any phan has a mique fuld.

 coüdmates. This ran alwas ho dome be a collomation when

 finc bumbate

$$
f_{1}==1
$$

$$
f^{\prime}: 1
$$

$$
I_{\prime}^{\prime}:-Y^{\prime}=-11 .
$$

136. Complexes in Cartesian coordinates. W, hall now , m- 1 .

 $\therefore 1$, l....

Comsiter a momspecial complex. In the plame at intinity is a minge peint I, the polde of the phane. The lines of epatee which pase through I form a set of parallel lines not belonging to the complex. These are called the diametores of the complex. Each diameter is comjugate to a line at infinity, sime the conjugate to a dameter mast meet all the pencil of lines of the remplex whese vertex is I. Comversely, any line at infinity mot themgh I has a diameter as its compugate. In other words, the pelter phemes of pemints
 Lel phemes lie 'un at diameter.

Consider now the pencil of parallel phanes fomed by panes which are perpendienlar to the diameters. Their poles lie in a diamoter which is mique. Therefore there is in outh monsperial
 twinat perpemdiatar to the polar planes of all prints in it.
 the polde of the phane at infinity is given be the erpations

$$
\begin{aligned}
& "_{12}, y+"_{13} z+"_{14} t=0 \text {. } \\
& -"_{12} x \quad+a_{23} z-{ }^{2}{ }^{12} t=0 \text {, } \\
& -"_{13} r-a_{23}!\quad+\pi_{n!} t=0 \text {. }
\end{aligned}
$$

which have the sulution

$$
\begin{equation*}
r: y: z: t=u_{23}:-a_{12}: u_{12}: 0 . \tag{1}
\end{equation*}
$$

Any line thengh the peint (1) is. therefore a diameter. and if $\left(r_{1}, y_{1}, z_{1}\right)$ is any tinite print of spate the equation of the diancter through it is

$$
\frac{r-x_{1}}{\prime_{2: 3}}=\frac{\prime \prime}{\prime \prime}-y_{13}=z-z_{1}
$$

The prolar platue of $\left(r_{1}, y_{1}-z_{1}\right)$ is, 首 (t)

$$
\begin{aligned}
& \left(n_{12} y_{1}+n_{13} z_{1}+"_{11}\right) \cdot r+\left(\cdots n_{12} r_{1}+"_{23} z_{1}-n_{12}\right)!!
\end{aligned}
$$

The line (1) is perpendicular whe plane (\because) when

 of the wris of the emmples.

Let lus take this asis as the axis of z. Thene from (1), " 1 .
 "a- ". " ${ }^{2}=1$. The entation of the cmplex is then

Which arme with (i). s. $1: 3$.
In (amexian coürlinates apation (b) is

$$
\because!n^{\prime} \quad r^{\prime}!+i\left(z \quad z^{\prime}\right)=11
$$

 t^{\prime} perpemdienlar th the asis. The memal th the phate makes with
 where \boldsymbol{r} is the distance from I^{\prime} the the axin. 'This leats whe the frllowing result:

 $r^{\prime}-r+m, y^{\prime}=a+1, z^{\prime}-z=1 z$, hame

 ...pations are

In the atomid phat. on any mimher winh the apmation

$$
r^{2} \cdot u^{2} u^{2} \text { (N) }
$$

For the direction of any curve on (8) satisties the equation

$$
x d x+y d y=0,
$$

and this egtation combined with (b) gives the solution

$$
\begin{equation*}
x^{2}+y^{2}=u^{2}, \quad z=\frac{y^{2}}{k} \tan \frac{-14}{x}+c \tag{9}
\end{equation*}
$$

which are the equations of helixes with the pith $\frac{2 \pi}{2} \frac{\pi r^{2}}{\kappa}$.
It appears from the preeding that any tangent line to a herix of the form (!) is a straight line of the complex. We shall now prove combersely, that ans line of the complex, excepting only the lines ($\bar{\sigma}$), is tangent to sur ha helix.

Since z is assmed not to be constant, we may take the equation of any line mot in the form (i) as

$$
\begin{equation*}
r=m z+h, \quad y=n z+h \tag{10}
\end{equation*}
$$

with the condition $b^{\prime \prime \prime}-p^{\prime \prime \prime}=k$, which is neressary and suffiecient in order that equations (10) shmble satisfe (if).

The distamer of a puint $\left(r_{1}, y_{1}, z_{1}\right)$ on (10) from (1\% in

$$
\sqrt{\prime} r_{1}^{2}+y_{1}^{2}=1\left(m^{2}+n^{2}\right) z_{1}^{2}+2(m l+\mu p) z_{1}+l^{2}+l^{2} .
$$

It is easily compurem that this distame is a minimmo when

The minimmun distanne is $\frac{k}{2}$, which we whatl take as a in the equations of the helix (?). The dieention of the helix at the print ($\left(r_{1}, y_{1}, n_{1}\right)$ is

$$
\text { is }, 1: l_{y}: 1 z=-n_{1}: r_{1}: x_{k}^{\prime 2}=m: n: 1 .
$$

This is the liention of the lime (11) and ourpromestion is prowed.
Wie hate therefore, the following thenem:

137. The bilinear equation in point coordinates. The +1phtinn

$$
\left.\Sigma_{1,} r_{1} n_{i}=1\right)(1
$$

is the most general equation whirh is linear in cach of the twe

By means of (1) a definite flate in asom iatent tw ath |mint $\%$. its equation being ubtained by heminer at onntant in (1).

In this berk we hase met two impertant wampleonfapation (1).
 polar phane with respert th the qualrin surface

$$
\Sigma{ }^{\prime}, r_{1} r_{1}=1 \text {. }
$$

 aceme only when the prele is on the quadric.
 point y_{1} its polar phane with rexpect to the linn emmphex

$$
\sum_{n_{1 k}^{\prime} \mu_{x}=11 .}
$$

The feint $y_{\text {a }}$ always lies in its folar flame. This asometation
 mannerd with the line complex.

EXERCISES

 that they are intersment hat mone.

 (whyugate dows alon.

 - แ!

 the phan at infinity wal. valuat in the mathex
138. The linear line congruence. Two simmbanems linear equations in line coniotinates,

$$
\begin{equation*}
\Sigma a_{1} r_{1}=0, \quad \sum \beta_{1} r, x, \tag{1}
\end{equation*}
$$

lefine a congromere. Evilently equations (1) are satisfied by atl lines common to two linear enmplexes. But all lines which belong (1) the two emmplexes defined he equations (1) belomg also to all romplexes of the peneil

$$
\underline{I}\left(r_{i}+\lambda \beta_{i}\right) r_{i}=0
$$

and the remgrander man he detmed by any two complexes ohtamed beriving λ two valmes (2).

A complex detined by (2) is iperial when

$$
\eta\left(\alpha_{1}+\lambda \beta_{1}\right)=0 ;
$$

that is, when $\eta(\pi)+\because \lambda \eta(\pi, \beta)+\lambda^{2} \eta(\beta)=0$.
 the theorem:
 introwert tarn firmed stmelaht limes.

The two fixed lines are called the diewtries of the eongronere. The direwtices are wident romjugate limes with rexpert to ays monsperial eomplex defined by equation (\because))

 rmasists of limes which interseret the diretrix and also belonge to a monoperial complex. It is eltar that the directrix monst be a lime of this momeperial complex. for otherwise it womlal hate a

As the vertex of the perat moses along the dipetais. the plame uf the fermil thrus atomt the direotrix.

 time wher amb tirse vars.

 follow mer mantr:

 emese that the eqpations of the two directrices of the yereat (onmplexe of the permil ate

$$
y-m \cdot r=1) \quad z=1
$$

:111!

$$
!+m \cdot r=11 . \quad \because=-\cdots
$$

$$
(\because-1
$$

By (:3). 13 m, the conations of the axis of any complex of the pencil are

$$
\begin{aligned}
&(1-\lambda) \prime \prime \prime z-(1+\lambda) \prime \prime \prime \prime \\
&(1+\lambda)=\frac{-(1+\lambda) z+(1-\lambda) \cdot}{-(1-\lambda) \prime \prime \prime} \\
&=\frac{(1-\lambda)!\prime \prime \cdot(1+\lambda)!}{0}, \\
& y=\frac{1-\lambda}{1+\lambda} m \cdot x \\
& {\left[(1-\lambda)^{2} \prime \prime^{2}+(1+\lambda)^{2}\right] }:=\left(1-\lambda^{2}\right)\left(1+m^{2}\right)!
\end{aligned}
$$

Which reduce tw

If we ehminate λ fromi these equations, we have

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) z+\frac{\left(1+m m^{2}\right)}{m} x y=0 \tag{:3}
\end{equation*}
$$

Which is the rapuired mpation of the evtimproid.
The equations show that the surface is a coblide suffate with oZ as a domble line. . In lines on the surfare are lerpendientar tor $\%$, and in ans plane perpendientar to wh there are two lines on the shrfare whels are disimet, wincelent, or masinary areording as the distanm of the phane from (is less than eqnal to, or greater than $\begin{gathered}\left(1+m^{2}\right) \cdot \\ \underline{a} m^{\prime \prime}\end{gathered}$.

We maty pat the equation of the erlintroid in another form. We
 eomplexes of the pencil, by the ande whinh any staight line on the erlimdroid makes with ol, and ber the distance of that hine from (). 'Then m=tanc. anm $\frac{1-\lambda}{1+\lambda}$ "' $=$ tan θ.

Equation (:) then beommes

$$
r=r \begin{aligned}
& \sin \because \theta \\
& \sin \because \alpha
\end{aligned}
$$

140. The linear line series. ('msider theer independent linew' rynatimus

$$
\begin{equation*}
\sum_{1}, r_{1} 11, \quad \sum \beta_{i}=1, \quad \sum y_{i}=0 . \tag{1}
\end{equation*}
$$

These eynations ate satistied by the enimelinates of lines whirh
 "plations in (1) athe detine a line worte Shy line of the series

$$
\left.\Sigma\left(\lambda_{1}+\mu_{t}\right\}+i \gamma\right) \cdot r=11
$$

 that is detemmined b (\because) .

A romplex of the typ (\because) is -perial when

$$
\begin{aligned}
& \eta\left(\lambda n+\mu \beta+v^{\prime} \gamma\right)-\lambda^{2} \eta(n)+\mu^{\prime \prime} \eta(\beta)+r^{\prime \prime \eta}(\gamma)+\because \lambda \mu \eta(n, \beta) \\
& +\because \mu l^{\prime} \eta(\beta, \gamma)+\because \cdots \lambda(\gamma, 16)-1 \text { 。 (} \because \text {) }
\end{aligned}
$$

 (alled the dientriens.

Ler us phate

$$
I=\begin{array}{lll}
\eta(\alpha) & \eta(n, \beta) & \eta(n, \gamma) \\
\eta(\alpha, \beta) & \eta(\beta) & \eta(\beta, \gamma) . \\
\eta(n, \gamma) & \eta(\beta, \gamma) & \eta(\gamma)
\end{array}
$$

 and $\lambda_{2} r+\mu_{2 H} S_{1}+l_{2} \gamma$.

$$
\eta\left(\lambda_{1} t+\mu_{1} \beta\right)+v_{1} \gamma, \lambda n+\mu \theta+\theta_{1} \gamma, \quad 1 \text {. }
$$

Whan of pas throurl the ir emmon print. ame some of the dimetrian wond intersect.

The limes of the arime (1) , mo the ome hamb, and their direer wine. ont the wher, fom, therefore 1 wo fanike of lines sum that
 fanily imereme all lines of the wher. This sumeste the wo fim-
 is malls that of a phandrie suftere follows from the theorem that

We sum un in the following woms:

 line amd. by a linear subatiminn am the reduren the the form

$$
\lambda \mu=11 .
$$

Theoe atre there aure ial antmphexes stuh that the ase of the first two do mot imteremt. hat the axin of the thind interseets rath of the axes of the time two The ancolic. theme fore an in Fige. ふ. The wriw

 －

 premer the wher of the romplex．

EXERCISES

 nan．－ $1 /$ ：mai $/$ ．

141. The quadratic line complex. I quadratic line emplex is detined by an equation of the form

$$
\Sigma a_{k, k} r_{1} x_{k}=0 . \quad\left(a_{k}=a_{2 k}\right)
$$

We shatl consider only the general case in which the above equation call be reduced to the form

$$
\begin{equation*}
\sum r_{1} x_{i}^{2}=0, \quad(\because=0) \tag{1}
\end{equation*}
$$

at the same time that the roiirdinates $x_{\text {a }}$ are Klein coürdinates satisfying the fumbamental relation

$$
\begin{equation*}
\Sigma x_{i}^{2}=0 . \tag{2}
\end{equation*}
$$

Lat us consider any fixed line y, of the complex and any lincar (omplex

$$
\begin{equation*}
\sum^{\prime \prime} x_{i}=0, \tag{3}
\end{equation*}
$$

contaning y_{i}. In genemal the complex (3) will have two lines through any peint l ' in common with (1), for l ' is at the same time the vertex of a perneil of lines of (i) and of a cone of lines of (1).

Analytically, we take l^{\prime}, a point on,$\frac{4}{}$ and z_{0} any line of (:3), but mot of (1), through P. Then any line of the pencil determined ly, y_{1} and z_{1} is

$$
\rho x_{1}=y_{1}+\lambda z_{c}
$$

and this line always belongs to (3), but belongs to (1) when and only when

$$
\because \lambda \Sigma y_{1} z_{1}+\lambda^{n} \sum z_{1}^{n}=0 .
$$

This gives in general twn vahes of λ, of whichome. $\lambda=0$. determines the line y_{i} and the other dememines a differen line. But the two values of λ both berome zero, and the line 4 , is the only line through f 'common th (1) and (i) when

$$
\sum, 4, z=11:
$$

$$
\begin{equation*}
\Sigma u_{1} r_{1}=0 \tag{1}
\end{equation*}
$$

 "A. It in eften saill that the tansent linear complex rontains all
lines of the complex (1) whith ate comserntive to 4 . sinee any line
 makes thin wotion more preerise.

Whe gemembly where at at aneil of tangent linear combpheses. For by virtue of (\because) the complex (1) may be writem

$$
\begin{equation*}
\sum\left(n_{i}+\mu\right) n_{i} \tag{i}
\end{equation*}
$$

"her" μ is any comstant, and the tangent limear complex to (i) is

$$
\begin{equation*}
\sum\left(r_{1}+\mu\right), \mu r_{1}-10 \tag{ti}
\end{equation*}
$$

If 4 , is men a line of the complex, equation (i) detime a perneil

The line y^{4} is callen a simglat line when the tamgent linear complex (f) is iperial. The comedtion for this is

$$
\begin{equation*}
\sum \cdot y_{1}^{2} y_{2}^{2}=0, \tag{7}
\end{equation*}
$$

Whith says that "ry, are the coimerinates of a line, the axis of the
 and hathe the salle ax is.

This asis immerets 4 , sime $\sum y^{2}=0$ (becathere y is at line of the
 pmint, and their phame a sim, which eondition (7) hodds is called as simbular lime.
 thongh r and consider the pemeil of lines

$$
\rho \cdot r_{1}=y_{1}+\lambda z_{1} .
$$

The (omblitinn that r a belong to (1) is

$$
\lambda^{2} \underline{1} y_{1} z^{2}=11
$$

 intursertion, in the simulula, lin.

In a similar manner we may take p as a simgular phane through a singular line $y_{1} \cdot z_{1}$, any line in ρ intereceting y_{1}, ant arain consider the pencil (8). Wre whatu aram (9), but the interpretation is mon that if z, is any complex lime in p, there is a pentil of hers in f^{\prime} with vortex on y_{1}. Comsequently in a simeplat plater the complex

Let I he surh a perint, and let the two pencils be $u_{1}+\lambda l_{1}$ and $a_{1}+\mu^{\prime}{ }^{\prime}$. 'Therl

 asis. Hente 1 is a simgular point. 'The seront part of the theorem is similarly powed.

$$
\begin{equation*}
\Sigma_{1} \cdot a_{i}^{\prime} l_{1}=11 . \tag{1:-}
\end{equation*}
$$

W'e shath fix ${ }^{4}$, amd take as h, that lime of the perneil which
 Thero

$$
\Sigma l_{i} l_{i}=0, \quad \sum a_{i} d_{i}=11 . \quad(1: 3)
$$

The detrmine h, we have tive aquations of whirh three ate lincar and two qualratir. 'There ate there

 *im!tului f"eints.

 as are the follt plates (at). In miler that two print- wh phan

 of the equation

 the abover equation mednees 10
and the wondition hat its disermmant shmblamioh is

$$
\text { 上, } \because, n_{2}=11 \text {. }
$$

If this combition is met, at, is a smentar lime he the pervions

142. Singular surface of the quadratic complex. Thr sinsular

$$
\rho:=\cdots n_{1}+\lambda_{1}!_{2}=(1,+\lambda)!n_{1}
$$

Thern a satiotion ther mpations

$$
\pm \begin{gathered}
1 \\
-\cdots+\lambda^{\prime} \quad!
\end{gathered} \quad(\because)
$$

sinee the limes z_{1} and $\frac{z}{a, ~}$ belong to the same perneil as y_{i}
 those of $\sum{ }^{\prime} r_{1}^{2}=0$, mo matter what the valate of λ. The comb-

We may mae the cosingulan emmplexes to prove that on an!! lime
 atn! liner !f" finer simbular planes.
 that / lies in the emplex (2) : in fate this mathe dome in fome ways, sinet $(\underset{\sim}{2})$ is wh the fouth orler in λ by vitue of the relation $\sum r_{1}^{2}=0$. Then there will be foms simgatar points of this new enmplex on / by presions proof, amd these perints are the same the the singular points of $\sum r^{2} \cdot r_{i}^{2}=0$.

 I alsu eomede. Therefore if / is tangent to ome of the surfaces it is tangent to the mher. Sut $/$ is any lime. Therefore the two sur-

This surfare the lowe of the simgular points and the emvelope of the singralar ghanes. is ealled the simember surfoter.
 Its ('artexian equation mas be written down by firs transforminer from Klein to Pliarker cörminates amel rephacing the latter

 reme shonld hememate into a pair of phame is the ('artexian rymation of the smgntar surface. It may he shown that the suffare
 and is therefore indmical with the intoreting sufand konwn as

[^7]
EXERCISES

1. Prowe that the tament limes of a tixed quatriw surfare fome a
 when the gratrie is a ephere.
2. Prose that the lines which intereme the forb fares of at tixed the

 This is the wormbledral omphers.

 Fime the sugular surfare.

 tion form at traturhal remplex.
3. If the mondinates of two limes and $\%$, are commeded hy the whations

$$
\rho \cdot r_{i}=\frac{!}{\sqrt{r_{i}+\lambda}}
$$

 the conimsular omplex

$$
\sum_{n,+\lambda}^{1} \pi_{n}^{2}=0
$$

 the wher.

 A.1.9mintal by and at.

$$
f^{\prime}\left(x^{\prime}\right)=0, \quad \sum\binom{c t}{c, x}^{2}=0,
$$

and that the singular surface is of deree $2 n(n-1)^{2}$, where singular

143. Plücker's complex surfaces. In any arhitrarily assmmed

 a surfare called by Pliaker a merthate suttate of the eomplex. If the plate moses parallel to itsolf. the ronite deseribes a surface called by Pliake an equatmial surface of the eomplex. It is ohsions that ath equatorial surface is only a particular case of the meridian surfare arisins when the line abont which the plane revolves is at infinity. In either ease the surface hat been calleal a rathelter surtitere.

It is mot dithentt to write down the egnation of a complex surfate. Let the lime ahomt which the plater resolves be determmed

Then the eosirdinates of any lime of the permel defined by 1 l'.

 in that plate. If. lownerr. I' is on that comic. the rowt of (1) mant he equal: that is

 (\because) in withe fonth were in the frimt remethatw of l.

 fane formed hy revolvine aphan alout the lime $/$ and lhat alls

 is oft the timeth atis．s．
 the ハwい eylationti

$$
\begin{aligned}
& \text { 上里尼。 } \\
& \text { (1) } \\
& \text { ざ } r^{2}=0 \text { 。 } \\
& \text { (} \because \text {) }
\end{aligned}
$$

 nf（1）aml the（onnie of（ \because ）in that plane．The（omples in there

 tival frimts of sull at contopmalema．

have the entire pencil $y_{i}+\lambda z_{i}$ in common. The conditions for this: are

$$
\begin{aligned}
& \sum y_{1} z_{1}=0, \\
& \sum \mu_{1}, z_{1}=0, \\
& \sum{ }_{1} \cdot y_{1} z_{1}=0 .
\end{aligned}
$$

This determines a line series which, by $\leqslant 1+0$, degenerates into two phate pencils with vertieses on $\%$.

The prints on $!$ with the properties just described are called the focerl $l^{\prime \prime \prime}$ ints r_{1} and r_{2} of y_{1}, and the phames of the rommon pencil of (1) and the tangent linear complex of (:3) are called the fiocel phenes f_{1} and f_{8}. The foeal peints ate often deseribed as the peints in which y_{i} is interseected by a consecotive line. The meaniug of this is evident from our disemsiom. For at r_{1} and r_{2} the perncil of lines of (1) is tangent to the complex rome of ($(\underline{2}$) , so that throught F_{1} or F_{2} goes ming one line of the congrime dombly reckoned.

The locus of the focal points is the fimed surfient: It will be shown in the next seetion that the line $!$, is tangent to the foeal surface at cacle of the peints F_{1} and F_{2}. and that the planes f_{1} and f_{2} are tangent to the same surface at F_{2} and F_{1} respectivels.
145. Line congruences in general. \backslash (ongrincuce of limes consists of lines whose cö̈rdinates are functions of two independent variables. For comentienere we will return the the roizdinates tirst mentioned in $\frac{S}{2} 27$ and, writing the ceplation of a line in the form

$$
\begin{equation*}
r=r z+x, \quad y=-\rho z+\sigma . \tag{1}
\end{equation*}
$$

will take r. s, ρ, and σ as the erërthates of the line. Thene if ρ, ρ, σ are functions of two imberemtent variables a. β, the lines (1) form a mos.
 phace

$$
\beta \quad \phi(12) .
$$

We armone the lines into puled surfares and if we forther impene (1n $\phi(0)$ the singra comblition

$$
\begin{equation*}
\beta_{11}=\phi\left(n_{n}\right), \tag{呮}
\end{equation*}
$$

 ables. For this it is mocestary and suthement that there exint a

 therefore satislies the equations

$$
\begin{aligned}
& d r=r \cdot d z+z 1 r+1 s \\
& d!\prime=\rho \cdot l z+z i \rho+1 \sigma
\end{aligned}
$$

 in wiven hy

$$
1 \cdot r=\cdot 1 z \quad \quad 1!1=\rho \cdot 1 \pi
$$

su that if the staight lime ame rume are tament, z must satisfy the two equations

$$
z \cdot 1 \cdot+1 s=0 . \quad z, 1 \rho+1 / \sigma=0 .
$$

and therone we must have

$$
\| \rho \cdot A-d i \cdot l \sigma=0 .
$$

If we replawedr. ds. dp, if hy their values, we have as an equation

$$
.1 \phi^{\prime 2}(n)+l i \phi(n)+1=11 .
$$

 dition for the wi-teme of the developable surtate throbshl, hat

tangeme. The points r_{1} and F_{2}, at whieh l is tamgent to C_{1} and C_{2},
 surtime.

It is obvions that any lane of the eomgramere is tangent to the foral surfare. for it is tangent to the mapilal edore of the deverapable to which it belomgs, and the emspidal edige lies on the foral surfare.

Let the line $/$ be tangent to the foral smface at F_{1} and F_{2}, and let f_{1}^{\prime} be the ampidal edge to whith $/$ is tamgent at F_{1}. Displace l shorlty along (', into the position l^{\prime} tamgent to C^{\prime} at F_{1}^{\prime}. 'The line f^{\prime} is tangent the the foral surfere anam at F_{2}^{\prime}, and the line $F_{2}^{\prime} F_{2}^{\prime}$ is a chorel of the foeal surface. Ss the point F_{1}^{\prime} appoteltes F_{1} along
 and the plane of l and l^{\prime} therefore approaches a tamerent plane to the foral surfate at F_{2}. Bat this plane is also the osembating plane

An interesting and inpertant example of a line rompronere is fomme in the nomal lines to athe suffer, for the normal is fully detomined hy the two variables which tix a point of the surfare.

 the given surfares at two ronserntive perints intersert, for this is moly me way of saying that the momats fom a developathe

 ratio of ematore and the foral surface is the sufate of renters

 -ide the plan of this bonk. W'e will mention without proof the imporant thenem that the lines of arrature are orthemonal.

Let us write the equationts of the momat in the form

$$
\begin{aligned}
& r-18+1 i \\
& !\beta+1 \prime 1 \\
& z-\gamma+11,
\end{aligned}
$$

 momal. 'Thern

$$
r^{2}+m^{2}+\prime^{2}-1:
$$

 from (b),

$$
\begin{aligned}
& d r=d n+a l n . \\
& d_{1}=d_{\beta}+i l_{m} . \\
& d z=1 y+r d n:
\end{aligned}
$$

whenco $n d r+m \cdot d y+m \mid z=11$.

That is, the displatememt of I ' bate phane in at diretion momat

EXERCISES

4. Show that if a rubed surface is composed of lines of a linear (omplex. on athy line of the surfare there are two points at which the tangent pate of the surface is the polan phane of the eomplex.
5. Consider any congranere of ames defined by

$$
\begin{aligned}
& f_{1}^{\prime}(r,!, \because, n, b)=0 \\
& f_{2}^{\prime}(r,!, \because, n, b)=0,
\end{aligned}
$$

and define as surfares of the comgrueture sufferes formed by eollerting the remgremer rures into surfaces aroorling to any law. Show that
 surh that all surfaces of the rongrume which contan ${ }^{\prime}$ ate tangent at these perints.
6. Prove that if the curves in Ex. Et ate so assembled as to have an envelope, the envelope is compered of foral peints.

('HAP'TER XVHH

SPHERE COÖRDINATES

146. Elementary sphere coördinates. Jmothr simple axample wi a geometrir tigure thermintel hy form pammers is the -phere.
 rations of the shom

$$
\begin{equation*}
(x-d)^{2}+(y-r)^{2}+(z-)^{2}=r^{2}, \tag{1}
\end{equation*}
$$

at the remplantes of the sphere and whata a fomerlimensional Erenmetry in whieh the sphere is the element.

 the erpuation

$$
\begin{equation*}
u_{1} r_{1}+u_{3} r_{2}+u_{3} r_{3}+u_{4} r_{4}+u_{3} r_{3}=1 \tag{-}
\end{equation*}
$$

 as taking \%, f, amd r. In fate if r_{i} are the coibelinates of $\leqslant 117$, then by (t), 客 117 , equation (\because) vall be witton
amd the entmextion with (1) is ohsions.
By 119 two -pheres are orthenal when and mly when

Consiler bow any lintar equation

$$
r_{i} \prime_{1}+r_{2} \prime_{3}+r_{i} \prime_{3}+{ }_{4} \prime_{4}+r_{5}^{\prime \prime} \prime_{i}=11
$$

The wow "romples" is used in the same semse as in ss $11:$, for
 natistion (t) has the coüratimeter

$$
n_{1}+\lambda \beta_{1}+\mu \gamma_{1}+\nu \delta_{1} .
$$

Comsiter mow the two simmbanems eqmations in sphere

Gpheres which satisly both of these egtations belong to two

 hat the wïrtinatw $n_{2}+\lambda \beta_{2}+\mu \gamma$.

Ith shares which behng to the two complexes in (ii) belonge
 bather form determine the handle. Tmong these ramplexes there
 again the condelasion that a humelle of spheres consists in gemeral of - - hheren thomgh two tixed pumts.

Three lintar "pluations.

 $n_{1}+\lambda_{\beta}$.

EXERCISES

 the fuin (.wn? 1..11:1.1.

 complax. show that athy two thengemal spheres ate eonjugate with rapert to this romphex, and that the phlar "omphex of athy spherer is the complas ot aphemes orthernal tor r^{2}

 the complas, ath that all spheres of sum a promithave the satme pohat "omplex.
147. Higher sphere coördinates. Let x, be athogmal pentasherital coumdinates wheres

$$
\omega(x)=\Sigma r^{2}=1 \quad \text { and } \quad \eta(, 1)=\Sigma x^{2}
$$

all! lat

$$
u_{1} r_{1}+w_{3} r_{2}+w_{3} r_{3}+w_{4} r_{1}+w_{3} r_{3}=0
$$

$$
i m_{1 ;}=11_{1}^{2}+4_{2}^{2}+1_{3}^{2}+1_{i}^{2}+1_{1}^{2} .
$$

$$
\left.\xi(1)=a_{1}^{2}+1_{2}^{2}+1^{2}+m_{1}^{2}+1^{2}+1_{1}^{2}-1\right) . \quad(1)
$$

 the shlure is determimed.

More gememally, if $a_{1}, a_{0}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$ are six quantities such that
with the eemdition that the detemmant $a_{0, ~}$ shall met ramish, the ratios $a_{1}: t_{k}$ may be used as the coürlinates of the sphere. Equation (t) then gres inter a more general quadratie relation. We shall, however, comtine amselves to the simpler a.
$B y(20), \leqslant 121$, the radins of the sphere

$$
u_{1} r_{1}+u_{3} r_{2}+u_{3} r_{3}+u_{4} r_{4}+u_{3} r_{3}=0
$$

is

$$
\frac{i u_{b}}{\sum_{i}^{n} a_{i}}
$$

Consequently, to change the signo of a_{0} is to change the sign of the ratius of the correspending sphere. If, then, we desire to maintain a me-to-one relation betweell a sphere and its coundinates, we must allopt some eonvention ats the meming of a moative ratins. Thin we shall do be considering a sphere with a pusitise radius as bomming that protion of space which comtans its center, and a "phere with negative radius as bernding the exterion pertion of -pace. Otherwise expresed, the pesitise radius goes with the imer surfare of the shere, the negative radins with the onter surfare A ephere with its radins thas determined is an oriented spluere.

If the sphere becomes a plane the pesitive value of $a_{i s}$ is assongated with one side of the plane. the negative value with the other.
A where is ipectial when and only when $u_{0}=1$.
148. Angle between spheres. By 119 the angle between two wheres with cerirdinates a_{1} and h, is detined be the "quation

Hence the angle θ is detominel withont ambignity when the signs of the radii of the tworeheres are known. If hith ratio are

$a_{6}=11$ and the other tive sphere cöndinates are the pentapherical maintinates of the eemter of the sphere. Therefore the emmition that the center of the eperial sphere a, lie on amother sphere b, is

$$
u_{1}^{l_{1}}+u_{2}^{\prime} l_{2}+u_{3} l_{3}^{\prime}+u_{4} l_{4}+u_{i} l_{0}=11 .
$$

Therefore if a is a sperial sphere b, aty other shere and

 its anter lios.
 ambermernely Herme we may sat:

The ramisthin!t at the first pular at $\eta(11)$ is the comblition thett ter",

 fonsersely. In this vate the spheres are satid to be tangent, but it is the hotiexd that gheres are not tangent when $\theta=\pi$. The differener betwern the aties in which $\theta=0$ atml these in which $\theta=\pi$ lies in the metation to eath other of the spate whieh the spheres bomal. In fact, if two spheres wheh are tangent in the elementary
 sebase anly when one is the bommary of its interion satere and the where is the bometary of its exterion spate that is, the tworatio hatre "pmsite signs. If two elementary sheres are tangent so that whe lese insite the other, they are tament when wiented only if ther ratii hatre the same sigut. Wray say

$$
\operatorname{Hinc}_{\theta_{2}} \quad{ }^{\prime \prime}
$$

('omacypently we hater the theorem:

149. The linear complex of oriented spheres. Equation (1) of Stur may witter

Comsider now a linear equation

$$
r_{1} u_{1}+{ }_{3} \mu_{2}+r_{3} u_{3}+r_{4} \mu_{4}+r_{3} u_{3}+r_{i} \prime_{i}=0,
$$

Where ${ }^{\prime \prime}$ are highere shere eoredinates and \because are emstants. The spheres whinh satis? this equation form a lineter complere

This equation may in general be ibentitied with (1) he deter-

$$
n_{1}=r_{i},(i=1, \because, 3,4, i), \quad u_{i}=i_{1} r_{1}+r_{2}+r_{3}+r_{4}+r_{3}^{2}, \quad(3)
$$

amt detemmining an angle θ be the equation

$$
\begin{equation*}
{ }_{4}, \cdots \cos \theta=r_{i j} . \tag{4}
\end{equation*}
$$

Equation (\because) is then satisfied be all opheres which make the angle θ with the base ephere 'This amgle is equal to 0 when and
 eromplex is called aperial.

We phat these results in the fom of the theorem:

 herathere of the exteptimal anses whinh arise when the base sphere
 lutemmed from (t).
 aml the cmmples is

$$
{ }^{\prime} \prime_{1}+{ }_{2} \prime_{2}{ }_{2}+{ }_{3} \prime_{1}+\cdot_{4} \prime_{i}+{ }_{i}{ }^{\prime \prime}=11 .
$$

 intrisertim! in al peint.

$$
\text { ". } 11 .
$$

 liesse splurer is imlitarmimate．
 base shere is then speriat and the angle θ is intinte．But the enm－ phete detintion of the emplex is themph itse eqnation

EXERCISES

2．Prowe that if $\sigma_{8}=0$ in the eynation of a romphex，the maphex

4．Prome that all patme torether makn a sumbial amplax with the base－phere the lands at intinty．

 difter mely in the sign of the lan tarm．

 haーい一phomi。

 －H．．．．．．

 the momplex tamgent to ane is tallgent to the athere

 -hew that the rongusate of a shere is is the inverse of of with reperet to the hase spheres.
13. Find withont caldulation aml verify by thr formalat thr anghate of a sphere with referemee to a comphex of spheres with tisad malius r.
14. Show that the ronjugate of a sphere with rexpert to the ermphex

150. Linear congruence of oriented spheres. The spheres (rmmomom to two linear complexes

$$
\begin{equation*}
\Sigma^{4}, \|_{i}=0, \quad \Sigma \ddot{l}_{1, u_{1}}=0 \tag{1}
\end{equation*}
$$

 beronges to any romplex of the form

$$
\Sigma\left(1+\lambda^{\prime}\right) n_{1}=0 .
$$

amb any two (omplexes of fom (\because) call be med to datime the (0)

that is,

$$
\xi(1)+\because \lambda \xi(1, l)+\lambda \dot{\prime}(l)=11 .
$$

$\xi(, h, h)=1$ ．The first two equatioms saty that the detimine whm－ plexes are seredal：the thitel eghation sats that the bate shere of either lies on the wher．

 sime the routs of（：\because ）ate equal．$\xi(1, h)=0$ ．This sily：that the hase sphere of the spectial eomplex belonge to the complex V $\because, \mu=0$ 。

151．Linear series of oriented spheres．（＇onsider mow the spleres （anman to the three complexes
 limentr wrios．

A ophere of the series（1）bromes also th any（omplex of the form

$$
\underline{\underline{1}}\left(\lambda l_{1}+\mu l_{1}+l_{\prime_{1}}\right) n_{i}=0
$$

and atry three linearly indepentent complexes（ \because ）may be nsed to detine the series．Among the compleses（ \because ）there are a simply infmite set of eperial complexes：mamely，those for which λ, μ and ${ }^{\prime}$ satisfy the muation $\quad \xi\left(\lambda_{1}+\mu^{\prime}+\nu^{\prime \prime}\right)=0$ ．

 dioutriar spheres．

The mather of the series depents on the whatater of equation（ $: 3$ ）．
W° ，hall asimme that the diserminatht of（3）does mot vanish． If the quantitios $\left(\lambda, \mu, \nu^{\prime}\right)$ are for a moment interproted as trilineat

 bahte whirh satisfy（ \because ）and are linealy imblathdent．We hate

 they ate the three eromplexts in equations（ 1 ）．
＇Then aty ome wi the ditertrix phares has the maimblate （：11：9）

$$
\begin{equation*}
\rho_{1}^{\prime \prime}=\lambda_{1}+\mu_{1}+l_{1}^{\prime \prime} \theta_{1} \tag{1}
\end{equation*}
$$

Now if a_{1}, β_{1}, amb γ, are any three spheres of the series (1), it is whimes that the spheres e^{\prime}, in (4) satisfy the theee equations

$$
\begin{equation*}
\sum t_{1},=1, \quad \sum \beta_{1} r_{1}=1, \quad \sum \gamma_{1} r_{1}-1 . \tag{ii}
\end{equation*}
$$

('ombersely, any sphere satiofying equations (if) satisly (t), for

 equation (8) mast be satistiod.

Henee the direretria sphetes tiarm rmother limear serios.
The speetial comptexes which may detime the series (ti) are

$$
\begin{array}{r}
\underline{\Sigma}\left(\rho \alpha_{1}+\sigma \beta_{i}+\tau \gamma_{1}\right) \mu_{1}=0 \\
\xi\left(\rho \alpha_{i}+\sigma \beta_{i}+\tau \gamma_{1}\right)=0
\end{array}
$$

where
The base spleres of these are simply the sotations of (1). I Ienter the diretrix sphets af the series (i) ore the spheres at (1).

 To prove this mote that by (i) wr have

$$
\lambda \mu \xi(\prime, l)+\mu \nu \xi(l, \cdot \cdot)+\nu \lambda \xi(\cdot, \cdot 1)=0,
$$

and no one of these remefhernts ven vanish under the hypothesis
 three direetrix spheress and hemee the theorem.
liy s 115 we are able to saty immediately:
 r!erlilt.
 When the diserimintant of equation (\because) vanishere.
152. Pencils and bundles of tangent spheres. If t_{i} atul l_{i}, $1^{\prime \prime \prime}$ ally twornhers, then

$$
\begin{equation*}
\rho \prime_{2}=\prime_{1}+\lambda l_{1} \tag{1}
\end{equation*}
$$

 yereial -pher in the pertoll is

$$
u_{s}+\lambda t_{i}=0
$$

 b, and comseymenty all yheres af the permil. are - perial.

The comdition for a phame in the perneit is

$$
\prime_{1}+i m_{5}+\lambda\left(l_{1}+i l_{3}\right)-I_{0}
$$

(o) that there is onty one plame in the pemeil males all the pherer

 athe wher. Therefore the speeial yhere is a peint sphere whone remter is in tinite apate. This remter lies on all -pheres of the
 to eath other at the satme point. Such shatere have in rammon two minimum lines determinet bey the internedtion of the pent

 form (: $: ~$, 111.
 example, it may onsist of gheres havine tor pamallel minimmon tines in rommon. The sperial sphere and the plater the pernil

 "entror lie on at mimman line. The plate in the permil is then

 plane at intinity matese all the phanes af the pentil are minimmm

$$
\begin{equation*}
\rho_{1}^{\prime \prime}=\mu_{1}+\lambda h_{1}+\mu_{1}{ }_{1} \tag{1}
\end{equation*}
$$

$$
\mu_{n i}+V_{1}+\mu_{0}{ }_{0} \quad I_{1} \quad(\therefore)
$$

$$
\left.\left.n_{1}+i_{5}+\lambda_{1} 1_{1}+\eta_{1}\right)+\mu\left(1_{1}+i_{1}\right) \quad \text { (}{ }^{2}\right)
$$

 sh that the spedial epheres are perint spheres. Sinee all spheres of the homele are tamerent, the eenters of the point spheres lice on a minimmo line which lies on ath the spheres of the hamdle. 'The perint pheres and the phanes form each a peneil in the semse alreatly diselased. so that any point of the eommon minimmm line is the eenter of a perint sphere of the bundle, and any pane through the minimm lime is a plame of the bmadle. From that we may show that any sphere which eontains that mimimm line and is properly oriented belonges to the bundle. For let r_{i} be smell a sphere and at any phane of the hamtle. 大incer, and a', have one minimme line in eommon, they have another minimmon line in eommon which intersects the tirst one at a point I. Let l_{i}^{\prime} be the peont sphere with center I. Then r_{i} is tangent both to and and l_{i}^{\prime} at I^{\prime}, and therefore

$$
\rho r^{\prime},=\prime_{i}^{\prime}+\tau l_{i}^{\prime}
$$

if the proper sign is given to a_{6}^{\prime}. But $a_{2}^{\prime}=a_{2}+\lambda^{\prime} b_{1}+\mu^{\prime} e_{1}$, and $b_{1}^{\prime}=t_{1}+\lambda^{\prime \prime} b_{1}+\mu^{\prime \prime} c_{1}$, so that

$$
\rho r_{1}=\prime_{1}+\lambda_{1} l_{i}+\mu_{1^{\prime}}{ }^{\prime}:
$$

whemee r, belonges to the hmulle.
 sists uft all the x^{2} spheres which hare " minimum lime in formmen ame oft me wher sphtites.

To aroid misumbersanding the stmbent shond remember that We are dealing with wrented sheres and that, for example three fementary tangent spheres whirh lie se that two of then are tan-
 he se wiented as to be tangent in the semse in which we mow hase the word.

 if they were, the ernters of there spheres womld be thate peints met in the same lime hat in the same phame so that wath is cont

153. Quadratic complex of oriented spheres. ('mbither the quantmate comphex detherl be the eynation

$$
\begin{equation*}
\Sigma u^{\prime 2}=0 . \tag{1}
\end{equation*}
$$

since the share emodinates satisf the eqnation

$$
\Sigma u^{2}=0
$$

the same remplex (1) is represented by any equation of the form

$$
\Sigma(\cdots+\mu) \cdots=11 .
$$

$$
(: 3)
$$

 am! [emsilter the pernal of tangont sheres

$$
\begin{equation*}
\rho \prime_{1}=\|_{1}+\lambda z_{1} . \tag{f}
\end{equation*}
$$

$$
\because \lambda \sum(\cdot \cdot+\mu)!!z+\lambda^{2} \leq(\cdot \cdot+\mu) z^{2}=0
$$

 anl unly when a atiofice the relation

$$
\underline{\Sigma}(\cdot+\mu)!z=0:
$$

that i- when a, lise mi the linear ramplex

(antains, In, hats. in common with the gradratie complex, only the
 ghalratic complex.

This defintion is : mathome th that given in peint spare for a
 stemen of a line in the tagent phane. The exemptomal eases of pernefo entirely on the complax are amathems th tangent lines which lie entively on the surfiane.

 lies alsw in ($\overline{\text { o }}$). The tangemt linear complex romatans all poperes of the guatratio emples aldawent to $\%$.

Sine μ is arbitary in (it the quatratio complex (1) has a permil of tangent linear comphexes thenghay aphere y. Among these there is in general one and only one wheh is a special complex, for the condition that ($\overline{\text { f }}$) be operial is

$$
\sum\left(r_{i}+\mu\right)_{1} \eta_{i}^{*}=10 .
$$

which, if we replace μ by ${ }_{\mu}^{\mu_{1}}$ and nise (1) and (2), beemmes μ.
ป

The sumial linear tanemt (amplex is them in anemal $\left(\mu_{a}=0\right)$

$$
\Sigma!4!=11 \text {. }
$$

 are - yerial when

$$
\begin{equation*}
\underline{L} \cdot, y_{1}^{2}=11 . \tag{i}
\end{equation*}
$$

 arthore
 -fher are anombling

 and that it is a sumblar yhate.

detime a pemeil. On the sphere "there is. theretore, a defmite

 We shall take z, ans shere of the perneil of tatuent sphers hetmed

$$
\begin{equation*}
\rho==(11+\lambda)!1 \tag{一}
\end{equation*}
$$

 atent to the there equations

 namel!

$$
\begin{equation*}
z_{r}=11 . \tag{10}
\end{equation*}
$$

 two plates $1 /$ ant A : Take

$$
\Sigma^{\prime \prime \prime}:=11 \text { (11) }
$$

 -phere. and

$$
\underline{L}_{11}
$$

solutions is the mmber of points in which $/$ meets the surface of singularities：that is，the degree of the surfare．

Torshe thes equatims we may begin ly eliminating λ from
 the derivative of the seemed with expere to λ ，the elimination of λ gives the comblition that the seecome apmation shatd have equal
 in λ ，ly virtne of the firm equation in（！）．the mentt of the e time ination of λ is an equation of the sixth degree in z^{2} or the welth degree in z ．This equation．combined with the ties of empat tions（9）and the linear equations（10），（11）（ $1: 2$ ）gives twent four solutions．Thereflare the ermetione at＇simgularitios is at the terenty－

Equations（！）－（12）may be ohterwise interped by consider ing（11）amb（12）as the equations of two complexes with hase Gheres which are mot planar and therefore imereet in a direle． which may be any virele．The eperial spheres of the comphem have their centers on this sirele．and the sere ial spheres whinh alses
 phatar ahds a new equation which in gemeral wamot be satiotied．

If the equations are expressed in（arte ainn mindedinates．the circle will meet a surface of the twentr－fumth arder in forty－ught prints．We have acomed for twontefor finite pemts：thenther
 phane of the finte cirele ments the cirle at intinty in two perints．

$$
\text { 上!!!! } 11 \text { 上 }
$$

$$
\mu \cdot(, \cdot \mu)!, 1,1.11
$$

 that in. $/$ is the limit print of intervertion of two meighbering
 This extablishes the ithentity of the surface whith is the lonens of f amd that embeloged by f 。

The dates of the suffate of smombaties is the mamber of the phates which pase thongh an arthaty line. To detomine this
 replate (10) by

$$
\begin{equation*}
n_{1}+i n_{3}=0, \tag{1.i}
\end{equation*}
$$

154. Duality of line and sphere geometry. Ninw line maimlinates

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{i}^{2}+r_{3}^{2}+r_{3}^{2}-11 .
$$

 wher haml, as the Klein lime maintinaters of $1: 30$.

 hand it follows from 冬 1 br. 1 th that for a mal plate we have

 matrintry in the ontar.

Two shater whase enomblates differ onty in the sign of r_{6} are
 difter in the same wily are distimet amd empursite with respert to the exaplest: The mation between phere and line is therefore

 ther matins.

 shall tall this comples s. It is seecial amb eqnsists of lines inter--roting the lane with complimates $1: 10: 0: 11: i$. Its equation in

 fle bollowing dathetir relations:

1. 1 mindit lime.

A hate of the .emathex \boldsymbol{C}^{\prime}.
1 lime of the exmytus
S lime of' hat ant of \therefore
A lime of - Mat mon af ${ }^{\prime}$.
I limenf (anl af s.
Twotherempuent withresert (1) 1 。

Two inturnting limes.

 limes inturatime at tixal lime.

Syhere spuese
Ashume.

A phante.
A perint sphere.

A minimun plane.
Two :phores differing only in the sigut of the rattus.

Twn tatsent spheme.

 opherestangent to a tixed sphere.

A limeat series forminge one of the familios of -phrres whim bor

to a bmadle of tangent -

 -phome yate.

 hatse in enmmon whly a print on the imatinaty direle at intmity.

 - Wifiomat familice.

a minimm line in common, so that in this way a plane corresponds th a minimum line.

Wre maty exhitht these results in the following table:

A print.
The prints of a erneral lime 1.

Tha foints of l' ronjugate tol whth resurt tor ${ }^{\circ}$.

The points on a hime of r hat not of $心$.

The peints of a line of i but mot of 1 and the peints of the empugate line with respert to C.

The preints of a line common to ('and s.

Syhore sumer

A minimum lint.
Whe set of crememators of a spheres.

Ther minimum lines on a perint sphere (the lines of a minimum (onte).

The two families of minimum lines ol a phane.

The single family of minimmm lines on a minimm phatre.

 any peint on F^{\prime} and comsider the pencil of tangent linces to F^{\prime} at F^{\prime}. These lines if intintesimal in lemght determine a surfate element.

Conrespumbing to the pemeil of tangent lines there is in the -phere pate a perneil of tangent opheres which determine a peint I^{\prime} and a tanstat phane: that is, amother surfate rement. It may be notieed that the peint l^{\prime} is the retater of the peint shere whirh conterponds the then of the emmples of in the permil of lines Whind lie in the surfite element of F.
IV. hate in this way ascodiated to at surfore element in the lime

 mamemats tor

these tangents is followed on the surfare we have a primmal tangent line (or an astupteria line) ofl F.
(omesporling th this, there are in the shate spate two eonselotive prints θ^{\prime} and h^{\prime} oft $f^{\prime \prime}$ sheh that atanemt sphere at rither enincides with a tament sphere at r^{\prime}. If one of the dirextims $P^{\prime} \ell^{\prime}$ of $P^{\prime} h^{\prime}$ is followed on F^{\prime}. We have a line of empature of $r^{\prime \prime}$.

 arrerependings seltitere in the spherteremere.

EXERCISES

1. Shan that the redann between line spare and sphere spare mat herapmesend by the equations

$$
-Z:=\pi-(X-i Y) t
$$

$$
(I+i):=T!-\eta t
$$

 remblt- $\|^{1}$ the text.
 otry ant the thre-dinthsional point geometry with pentaspherical (awnlinatto.

('HAP'TER XIN

FOUR-DIMENSIONAL POINT COÖRDINATES

155. Definitions. We shall now develop the eltments of a fommdimensimal geometry in which the ideas and methends of the ofementary theredimensional point geometry are med and which stambe in essemtially the same relation that geometry as that does tw the erometry of the plame.

We shall define as a $l^{\prime \prime}$ int in a fomedimemsiomal space any set of values of the form ratios $r_{1}: r_{2}: r_{3}: r_{4}: r_{5}$ of five sariables. In a mombungrenems form the peint is a set of values of the four variahbes (r. y, z, ir)

I straight lime is defined as a medimemsimal extent determine d ley the erguations

$$
\begin{equation*}
\rho \cdot r_{1}=y_{1}+\lambda z, \quad(i=1, \because, \because, 4, i) \tag{1}
\end{equation*}
$$

where y and z are $t w o$ tived ${ }^{2}$ mints and λ is an indepembent variable.
A plene is defined as a two-dimensimal extent determined by the "quations:

$$
\rho r_{i}=y_{1}+\lambda z_{1}+\mu \mu_{i} . \quad(i=1, \ddot{2}, 3,+, \pi)
$$

where r, 4 , z ane there fixal peints mot on the same straight lime and λ, μ ate indepembent variables.
甾 the mpations

$$
\rho r_{1}=y_{1}+\lambda z_{1}+\mu \prime_{1}+r^{\prime \prime \prime} . \quad\left(i=1, \because, \because_{1}, t, \pi_{1}\right) \quad(: 3)
$$

From then detintions follows at were the theorem:

 in ummber and satisfy the same contition ats the given fulnt- maty be nised to define the loctus. We shall show this for the phane (\because). Let Y be a print defined byequations (\because) when $\lambda=\lambda_{1} \cdot \mu \quad \mu$: that is. lett

$$
\begin{equation*}
\xi_{1}=y_{1}+\lambda_{1} z_{1}+\mu_{1}^{\prime \prime} \prime_{1} . \tag{1}
\end{equation*}
$$

Equations (-3) may then be written

$$
\begin{equation*}
\rho \cdot r_{1}=\zeta_{1}+\left(\lambda-\lambda_{1}\right) z_{1}+\left(\mu-\mu_{1}\right) \prime_{1} \text {. } \tag{玄}
\end{equation*}
$$

Then any point which ran be whatimed from (\because) (an alan the whathed from ($\bar{\sigma}$) and (ombererly

 by the frational forms $\frac{\lambda}{v^{\prime}} \cdot \frac{\mu}{y^{\prime}}$, write the empation of the flane an

$$
\rho \cdot r_{1}=v_{1}^{\prime \prime} l_{1}+\lambda z_{1}+\mu \prime_{1} .
$$

Wir hate shmw that in mpatoms (\because) the primt may be

Ther sumbent will hate mo diftionty in proving the the wem for - wateht lime aml hyerp!ane.

i	! 1	$\ddot{1}$	11%	'
i	. 1	\because	$1 /$	"
$r:$. 1		17	"
i	. 1	\because	"'	${ }^{\prime \prime}$
r	./		"	"

Hence:
 the somitimatos r. .

Comsersely:
IV. Any linear equation in .r, represents a haprephane.
1.1

$$
\begin{equation*}
\sum{ }^{2}, r=0 \tag{i}
\end{equation*}
$$

 the equation hat not on the same staight line. Then we have
and by eliminating $a^{\text {, from these equations and (} 7 \text {) we have an }}$ equation of the form (if) and thence equations of fom (:3).

If we eliminate ρ, λ, μ from equations (\because) we have the $t w o$ equations

$$
\begin{align*}
& \begin{array}{llll}
r_{1} & n_{1} & z_{1} & n_{1} \\
r_{2} & y_{2} & z_{2} & n_{9} \\
r_{3} & u_{3} & z_{8} & u_{3} \\
r_{1} & y_{4} & z_{4} & n_{1}
\end{array}, \tag{+}
\end{align*}
$$

That is:
V. An.y phone ming lee repersentel lint two linear equations in the rourdimutes c_{i}.
('mbersely:
VI. An!! tro, indepentent linear suluations represent a plime.

Let

$$
\begin{equation*}
\Sigma_{1, r_{1}=0 .}^{\Sigma_{1}, r=0} \tag{!}
\end{equation*}
$$

be such equations. Since the are inderembent, at hat whe if the
 The two equations lan then ber sulvel for r a and x. and thas
 ate there perints satisfying the caplations han onn on the same
 of the form (A) amd finally of the form (-2).

In the sathe mamber wr may anily poos:

 ()hamisis the difference between the represtmations of a plate int

 ant there-thmenamal geometry

 it may ber letpent for the statent for herar in mind that within the

The firet part of his thewrem follows immethately from

This follows from the fate that the fome empations

$$
\Sigma r_{1}=0 . \quad \Sigma b_{1} r_{2}=0, \quad \pm r_{1} \quad 11 . \quad \Delta l_{1} r_{1}=0
$$

 four eqpations repersent heperphanes of the same lamble.

For the "ynations whith determine the peints eommon to at pathe
 mine at lime. If, howerer, the phane lies in the heperphane, the latter may be taken as whe of the equations of the phate (theorem J). ath we have moly two equations. Finthermore, il the phate intersee the heperphane in there perints not in the same smaght lime.

 ever, the phates ate in the sther hererphate. Ahe equation of that

 "4tations of wath of the there planes.

 thather du mot lie in the sathe hypephate.

 same hyperphane (theorem ${ }^{\circ}$).

Therearoll is obsions.

 pmint an the lime lies atiorl!! in the plathe.
 five equations. which is in gemmal impesthte. If homever, the line
 may tre redhed to fomte.

 line ami the platm.

 linい.

157．Euclidean space of four dimensions．W＂r shall ronsidur now

 and phate

$$
I=\frac{r}{t} \cdot \quad, \quad{ }_{t}^{\prime \prime} \quad \eta=\frac{z}{t}, \quad H=\frac{\prime \prime}{\prime \prime} .
$$

＇The distame hetween two puints is detimed ly the rymation in

$$
I^{2}=\left(I_{2} I_{1}\right)^{2}+\left(Y_{2} \quad Y_{1}\right)^{2}+\left(Z_{2}-Z_{1}\right)^{2}+\left(11_{2}-I_{1}\right)^{2} \quad \text { (1) }
$$

of in the hummernents memplinates

$$
d^{2}=\left(t_{1}^{t} \cdot r_{0}^{t}\right)^{2}+\left(I_{2}^{t}-l_{1}^{t}\right)^{2}+\left(z_{2}^{t}-z_{1}^{t}\right)^{2}+\left(m_{1}^{t}-n_{1} t_{0}^{2} \cdot(\because)\right.
$$

from which it aperas that the distance betwern iwo tintre points
 puint is in erneral intmite．
 dinat．－

whinh mat lı wrinn

$$
\begin{array}{ccccccccc}
1 & 1 & \gamma & \ddots & \% & \% & \| & \| \\
1 & 1 ; & & 11 & 1 & (\therefore) & (1) &
\end{array}
$$

lime. It is realily seetl that at lime may fe drawn thonsh the point $\left(X_{1}, V_{1}, Z_{1}, H_{1}\right)$ with aty

 This juctities the nse of the word.
 respertively are said to make with each other the atoshe θ. detimed by the equation

 two peints rednces on the Enclidean distatere. 'The "ymation of any stration line in that hyperplam is

$$
\frac{I-I_{1}}{.1}=\frac{Y-Y_{1}}{l}=\frac{Z-Z_{1}}{{ }^{\prime}}
$$

 the hypephane $H=0$ is Euclidean.

In the hyperphane at intinity. $t=0$. a peint is fixel by the

 With ymalliplanar maindinates.

whenere it aypars at one that its interomp with $t=0$ is the print 1: 1 : $\boldsymbol{c}^{\prime}: 1$.

The explation of a heperplane is

$$
1 m+1!!+1 z+1 m+1: t=0 .
$$

and its frate on the hyperplane at infonty is the plate

$$
.1 x+I!!+r^{\prime} z+I n=0 .
$$

similarly, the "quations of a plame are

$$
\begin{aligned}
& I_{1} r+I_{1} \prime \prime+I_{1} z+I_{1} \prime \prime \prime+I_{1} t=0 . \\
& I_{2} r+I_{2} \prime \prime+I_{2} z+I_{2}^{\prime \prime} r+I_{2} t=0 .
\end{aligned}
$$

amb its trate on the heperplane at infinity is the stmatht line

$$
\begin{aligned}
& 1_{1} r+l_{1}!\prime+\left(_{1} z+I_{1} \prime \prime=0\right. \\
& A_{1} r+I_{2} \prime \prime+C_{2} z+I_{2} \prime \prime=0
\end{aligned}
$$

 from a tixed print are equal. It is mat torme from (\because) that the erpation of a herpersphere is
and that its interept with the heperpane at intinity is the pather surame

$$
\begin{equation*}
r^{2}+7^{2}+z^{2}+1 r^{2}=11 . \tag{!}
\end{equation*}
$$

158. Parallelism. Aly two of the motignationc, statisht line.
 interarotion is at intintits.

Seither do we find anything mow emmeming atine paralled to a
 matess it lies in the same hylerphathe．In the latter rast the linte mas intersed the phate in a tinite pemint or be parablel to it．We hatre the following theorem：

 teraed in a line at intinits．amel are said to be simply f＂tiallal if they intersett in a single primt at intinity ant in wather p川⿲二丨匕刂。

From theorem XI，（t）冬 1 Sti，we have，at mere，the thenmen：
 hi！p！r！plant．
 malinary theretimemional weometry（On the other hamle two

 wht in the folluwing theomen：

is fomm also in two interseding planes, the migue direction being that of the line of intersedtion.

I phan is parallel to a hypeplame if they intersect in a straght lind at intinty. Let this line be 1 . Then any line in the plane meets 1 in a point l^{\prime}, and a mundle of lines may be drawn in the hy perpane themgh l '. Then each line of the homethe is parallel to the given line. The haperplame meets the plane at intinity in a plane ine in which the line l lies. Any pate in the leyperplate intersents ${ }^{\prime \prime}$ in a line l^{\prime}, which has at least one peint in commen "ith / lmt which may coineide with l. From these considetations we state the the orem:

Two heprphats atre paralle if they intersect in the same plane at infinity. Let that phate be in. Sny plane in onte hypephane muets in in a staght line / ant throngh / maty be passed a peneil

 Whith interset in a print mates they comede. The two phanes ram have no wher perint in remmon maless they are in the same hyperphate. Henee we hate the theorem:

The amalyte comditions for parallelism are casily given. The

$$
I_{1}: l_{1}: \prime_{1}: l_{1} \quad \text { all } 1 \quad A_{2}: l_{2}: \prime_{2}^{\prime}: l_{2}
$$

$$
1_{1}{ }^{\prime} t+E_{i}:^{\prime \prime}+r_{1}:+I_{1} \prime \prime+E_{1} t=0
$$

Finee two phates are simply parallel when they internet in at
 the two plates
aml
shomlal low simply parallel is that

$$
\begin{aligned}
& 1, \quad 1 ; \quad 1 ; \quad l_{i}
\end{aligned}
$$

Fht that mot all the oher formonder demmanamts of the matix

Smmla vanial.

 determintut of the matrix

$$
\begin{array}{cccc}
1 & 1 ; & 1 & l \\
1 & 1 ; & 1 & 11
\end{array}
$$

 -homhl he famallel is that lhe determinathe of the matris

$$
\begin{array}{llll}
1 & l i & 1 & l \\
1 & 1 & 1 & 1 \\
1 & 1 &
\end{array}
$$

 (har matrix

$$
\begin{array}{llll}
1 & 1 ; & 1 & 11 \\
1 & 1 ; & i & 1
\end{array}
$$

$$
11: 1 ; 1 ; 1 \cdot 1111
$$

This comdition may be given a useful interpretation in the heperphane al infinity. The pelar plane of a puint $x_{1}: l_{1}: z_{1}: \pi_{1}$ in the heperphat $t=1$, with respert to the ahsolute $y^{2}+y^{2}+z^{2}+m^{2}=0$, is $x_{1} r+\mu_{1} 4+z_{1} z+\omega_{1} \mu=0$. Equation (1) therefore shaws latat two gerpendienlar lines men the leyperphan an intinity in two peints. athl of which is on the pelar phate of the wher with respert to
 romblition that then liens are formentiontar is that their treese one the

A line is said whe perpenticulat th a heperphane when it is perpendientar to every line in the hyperphate for his to hapren it is meessary and sutheicent that the haperplane meet the hyperplane at intinity in the polar plane of the trate of the line. From this follows at cone the thenem:

Sine in tle phane at intinity the pelar plane with respert to the
 we lave the themem:

 two of which are pamalld. detmmine there momentinat paints of the tane of the heymplane an intuity. The line perpertientar tw

A line in perpembionlar wa phate if it is perpendientar tornery lime in that plate. From this we hate the theorm:

The detmition of ferperminalatity of lime and phane is the same

 nol lomeser true.

 hats. 1h1. (lacorem:

With the same motation as lafome let / he a wiven phathe. I' a

 hientar for. 'Therefore we hase the followine thensens:

From the forerning we asily dedne the following theorem:

 In the remeluy,

If twe semiperpentioular phanes he in the same hyperplane. they intersed in a lime and are the ordinary perpendicular phame of theredimensimal geometry. If wo semiperpendicular phans are bot in the same hyperphat, they interser in at singhe point. If this perint is at intinity, the two planes are also simply paralled. In these cases the tatere L and A intersent in a peint $t:$ which is harmonice ronjugate to buth 1 and B. Frome this foflows the 1heweme:
 diection at the periallel limes ut the teren phanes is then arther, iment to

It is twhe motieed that in this case the dirention of the gamalle line is smilar th that of the line of intersertion of semiperperndientar phate in the same hyperphane.

A phame / is perpenticular tha heperpane h whon it romams a nomal line the theperphate. The rater L of the phate then
 "onjugate polar L^{\prime} of L lise in $I /$. Therefore:

 botwern their mimal lines. Hane ton lyperphame.
and

$$
1_{1} r+1 j_{1} \prime^{\prime \prime}+\prime_{3}^{\prime} \because+I_{1} \prime \prime \prime+l_{1}^{\prime}{ }^{\prime} \quad 11
$$

all J"llembicular when anm muly when

$$
11+1: 1 ;+r_{1}^{\prime}: I_{1} I_{1} 9 .
$$

This is the eondition that the tanes at infinity of the two leyerplates atre suth that eath contains the polte of the wher, at might be inferted fom the detintion. From this we have the thememes:

 polar of the line commerting the pales of the plames, we have the thenserill:

In the hyerphane at infinity we maty, in an intinite nmmber of
 respet to the absolute. Frem any linite point (1) daw the lines
 are oirall in the following theorem:

 the lime. .

 nath heperplathes hy the heperplate

$$
.1 r+1!!+(\because+1 m+E=0
$$

.1

```
                                    I;
```

at

$$
\begin{array}{cc}
11^{2}+1 i^{2}+1^{2}+12^{2} & 11^{2}+1 i^{2}+12+11^{2} \\
1 & 11^{2}+1^{2}+1^{2}+1^{2}+1,
\end{array}
$$

11 11. 11

$$
1^{2}+13^{2}+1^{2}+11^{2}=11 .
$$

We may denote these be l.m, nor respectively, and write the "quation of the hyperplane in the form

$$
l x+m!y+n z+r m+p=0 .
$$

with $l^{2}+m^{2}+n^{2}+r^{2}=1$. The equation is then in the nermal firm, and it is casy to show that p is the length of the perpendienlar from the orgin to the plame. Also by the same methods as in there-timensional geemetry we may show that the lengeth of the jerpembicular from any pint $\left(r_{1}, y_{1}, z_{1}, w_{1}\right)$ is $l_{1}+m y_{1}+n z_{1}+\mu_{1}+p$.

Let us now take any contiguration deseribed in theorem XV, and. writing the ergation of eath of the fom hymerphanes in the nomal form, make the transfomation of eoiordinates given by the equations in monhomegreons cöndinates:

$$
\begin{aligned}
& x^{\prime}=l_{1} r+m_{1}{ }^{\prime \prime}+\mu_{1} z+r_{1}^{\prime \prime \prime}+p_{1}^{\prime \prime}, \\
& y^{\prime}=l_{3} r+m_{2} y^{\prime}+n_{2} z+r_{z^{\prime}} \prime+l_{2}, \\
& z^{\prime}=l_{3} r+m_{3} y+n_{3} z+r_{0^{\prime \prime}}^{\prime \prime}+l_{3}^{\prime}, \\
& \mu^{\prime}=l_{4} x+\prime_{4}, l+\mu_{1} z+r_{4}^{\prime \prime \prime}+\mu_{4} .
\end{aligned}
$$

with the conditions $\quad l_{i}^{2}+m_{i}^{2}+n_{a}^{2}+r_{i}^{2}=1$,

$$
\left.l l_{k}+m_{1} m_{k}+n_{i} n_{k}+r_{i} r_{k}=1\right) \quad(i \neq k)
$$

The new enördinates are the distames from fome orthemal hyperphans, imb, in fant, ome disemssion shows that the same is trme of the miginal ceürdinates.

In the new system the equation for distame is maltered, namely,

$$
d=V^{\prime}\left(r_{2}^{\prime}-r_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}-y_{1}^{\prime}\right)^{2}+\left(z_{2}^{\prime}-z_{1}^{\prime}\right)^{2}+\left(m_{2}^{\prime}-m_{1}^{\prime}\right)^{2},
$$

 in thee dimensims. This justifies the statement alrealy madre in anticipation. whinh we mow give as at theorem:

160. Minimum lines, planes, and hyperplanes. In the disullin of the previons seetion we have had th make exeeption of the anes

$$
\begin{equation*}
I^{2}+I^{2}+1^{2}+I^{2}=0 . \tag{1}
\end{equation*}
$$

Wr. shall now examine the exceptional cases.
 prantitios of a stagight line satisfy equation (1) is that the lime intere sects the absolate, or, in other wores, that the trate at infinity of the line lies on the absohte. The netessary and suffiednt eondition that
 that the trace at intinity of the hyperphane is tangent to the abobhte. In this ease the hyperplate is said to be tangent to the aboblute.

The stratht lines which interseet the absolnte are the mimimmon

 inary diele at intinity, and the lines in the hyperplate whith mert the abonhte are therefore the minimmon lines of the herevplate.
 call evilcmly be determined in an infinte momber of wat on as
 therefore bothing new to add to the threerelimensimal propertien of minimmal lines.
 man lines. one to tath of the points of the absolate. These lines

 minimuma limes.

 emtimely whe thenlume.

The third type of plane is, however, not fomed in the ordinary threedimensional geometry. For if a plane meets the absolute in a straight line, any hyperphane eontaning it contains this line and therefore interseets the absolute in two straight lines. The geomery in this hyperplane is therefore a geometry in which the imaginary cirche at infinity is rephaced by two intersecting straight lines. Its properties will therefore differ from those of Euelidean space.

A phane at infinity intersecting the ahsolute in two straight lines is tamgent to it. Therefore a phane of the third type lies only in lyperplanes tangent to the absolute. A mique property of these plames is that any straight line in them meets the absolute and is therefore a minimum line. In other words, the distane between any two points on planes of this type is zero. We shall refer to a phane of this type as a minimum plame of the seromel kiml.

Comsider now a lyperplane which is tangent to the absolute. The equation of such a hyperplame is

$$
A \cdot r+B y+(z+I m+E=0
$$

with $A^{2}+l^{2}+r^{2}+I^{2}=0$. From amalogy to three-dimensional grometry we shall call sull a hyperplane a mimimum huperphone. It has alrealy been remarked that in a minimum liyperplane we have at infinity two intersecting straight lines instrad of an inaginary circle. There will be a minge direction in the hypeptane: namely, that toward the point of intersection of the two imaurinary lines at infinity. For comsenime we shall call a line with this direction an aris of the hyperphane.

Through every point of the heperphane goes an axis, and through
 taining one of the two interserting limes at intinity. Any other plane through the axis is an ordinary minimm plane. The conme of minimum lines throngh a peint splits up, then, into two intersecting planes.

Any pame not containing the axis interserets the absulute in two distinet fuints and is therefore an ordinary phane.
 the the alsuhter the momal th the hyperphe pases thengh the print of tangener, which is the fuint of intersection of the two

 ahat tw erery plan in the minimum hyerplane.
 of a minmum leypeplane with the heyerphane an intinter: and het

 Two melinary plane in (he minimm hypertane. therefore samme be perpembioular th tarly other.

But comvitur a minimum plane of the tirst kint when trace on the hyererphan at intinty is the line we. The ranjusate prlar of the line (1), is a line oli. ('msenglently aly 1 wo minimum phane of the first kind whose manes are (te) ami the mometively are (ombWhely perpentionlar. This state inf twormatutely perpendicular phame

Fl., 141
 phan and is therefore not fombl in burditan genmetry. This is the th the fant that in an owlinary hepertane onty one mini-

Finally, it may he remarkent that a minimum jhan of the sement

$$
\begin{aligned}
& \because^{\prime} \quad \because: i \| r \\
& \mu^{\prime}-\because \quad i \| r . \\
& .
\end{aligned}
$$

$$
I^{\prime} \quad\left(r_{2}-r_{1}+\left(!_{2}-n_{1}+(\therefore-\therefore)\left({ }^{\prime}\right)^{\prime}-{ }^{\prime}\right)\right.
$$

In the hyperphane $\mu^{\prime}=0$ a print is tixal by the conimdinates

$$
l=\left(r_{2}-r_{1}\right)^{2}+\left(n_{2}-n_{1}\right)^{2} .
$$

Thee equation of the two sumight lines at intinity is

$$
r^{2}+r^{2}=10 .
$$

and the equations of any ax is of the hypeptane is $r=r, y=y$.

 either of them atong all axis.

Comsiber the erghations

$$
\left(r-r_{1}\right)^{2}+\left(y-y_{n}\right)=r^{2} .
$$

This repements the law of foints at a mantant hitance "from a fixed fuint r. a_{0}. z. Where z is artions. From the form of the equation the lesels is a celimber when efements ate axes. Bows
 of the axis. $r=r_{n},!=!=!$.

The above are anne of the feroliar pronerice if a minimum hyperphane.
161. Hypersurfaces of second order. ("nailuy the eynation

$$
\sum_{n}{ }_{i} \cdot r_{i} r_{k}=11 \quad\left(1_{i,}=-n_{i}\right) \quad(1)
$$

$$
\rho \cdot r \cdots!+\lambda z
$$

lime in two prints and is therefore at quatrite sumate or elar the

 tion（ \because ）the grint \because ，is taken on the herpersurfare，the lime will ment

$$
\Sigma H_{k} y_{i} z_{k}=0
$$

This means that if y_{i} is on the hyperatiate（ 1 ），any perme ont the hymerpame

$$
\begin{equation*}
\sum_{1, n_{1} r_{2}=0} \tag{1}
\end{equation*}
$$

 staight line tangot the the hersinfare，and this property is

 two dimensions which has the property that ally puint on it detor－

 of the fular havephame in whter in the form

$$
11 r_{1}+\| r_{2}+11+11 r_{+}+11
$$

＂い．lan！

From this it follows that any point has a delinite polar heperphane. The comeres is trate hewerer, only if the deteminant

${ }^{12}$	${ }^{\prime \prime}$	${ }^{\prime \prime}$
${ }^{\prime} \times$	"	${ }^{\prime \prime}$
${ }^{\prime \prime}$	1	
${ }^{\prime \prime}$	":	${ }^{\prime \prime}$
${ }^{\prime 2}$	${ }^{\prime \prime}{ }^{\prime \prime}$	${ }^{\prime \prime}{ }_{6}$

小ens mon ranis. The vanishing of this determinant is the nepessary and sulfiniont condition that equations (i) shomblare a sohtion. Therefore we sily:

If the heremurface hats a simgular puint. it is caty th see that every polar hypreman pases thromg that guint. Therefore only hyperphames throngh the singular peints can have peles.

The properters of pelar hyperphes are similar to these of pelar
 with slight mulitications, be repeated for the four dimensions.

Whe may ahor cmpley some of the methods of 593 in rlasi-

 in applying these methents to shew that the equation maty be renduc. 10

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{\prime 2}+r_{4}^{2}+r_{5}^{2}=11 .
$$

Thue case of heyersurfaces with singular puints are more tedions if the whentary methents are nesel. It is preferable in these vases (1) 11-4 the menthen of elementary divisors.
162. Duality between line geometry in three dimensions and point geometry in four dimensions. Sinue the straght line in a threwdimensinal opare is determined ley fone coindinates. it will be hatistie with the fuint in four dimemsions. In urder to have

$$
\begin{align*}
& \rho \cdot r_{1}=1^{2}+r^{3}+Z^{2}+11^{2}-1 \\
& \rho \cdot r_{2}=-1 \\
& \rho \cdot r_{i}=\because! \\
& \rho \cdot r_{4}=2 \% \\
& \rho \cdot r_{:}=211 \\
& \rho \cdot r_{:}=i\left(1^{2}+1^{2}+Z^{2}+1^{2}+1\right) .
\end{align*}
$$

where

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{3}^{2}+r_{3}^{2}+r_{1}^{2}-11 .
$$

 hats the mïndmates $1: 11: 11: 10: 9$: .

Ther erplation

$$
{ }_{1} r_{1}+w_{2}^{2} r_{2}+n_{3} r_{3}+t_{4} r_{4}+{ }_{3}, r+r_{1}{ }^{\prime}
$$

is that of the hypersphere

There are form varimes of hyprepheres:

\therefore Point hyperphere $\quad \sum, a_{i}=0, \quad a_{i}+i \pi_{i}=0$.

\pm

Point.
Real pmint an infinity.
Proner hyerophere.
Proper hyperphane.
Pominh hyersphere.
(enter of fuint hypursphere.
Minimum heperphane.
Hypuphane at intinity.
Two points on same minimum lime.

Any imasimary frint at intinity.
Points rommon to two her phemes.

Vertion of two pemint hepre dres of lime engruene - hheres whirla pase through the intersedtons of two heprepheres.
(ierledetined be the intersention of thee hypercheres.

Tworimers surh that adeh mint
 sphere pasing thement the other.

Line.
Line 1.
Sonsperdalline eomplex not rontaining 1.

Sonsperial (omplex contamingl.
Suetialeomplex not contaminer/.
Ixis of suedial eomplex.
Suedal complex montaningl.
Sperial emmples r with axis l.
Two intersedime lines.
Lime intersenting 1.
line ronsrumare.

Romblu:

Tworermbli enematins the satme

The nse of hexatpherical eoïndinates wives a form-dimensional

 Such a pater is in a mer-to-one relation with the manifuld of statight limes in ぶ,

$$
\begin{aligned}
& \text { p.r: } \quad r^{2}+r^{2}+z^{2}+m^{2}-t^{2} \text {, } \\
& p r \quad \because r . \\
& \text { p.r } \because \because r t \text {. } \\
& \rho \cdot r_{1} \because \because= \\
& \text { p.r: } \quad \because \text { wt. } \\
& p . r_{r}=i\left(r^{2}+r^{2}+r^{2}+\left(m^{2}+t^{2}\right)\right. \text {. }
\end{aligned}
$$

If we beve these eymations to exablish the relation hetween the
 ath hefore with the followiner axemetions, all of whith relate tw the

 (:3) in the form

$$
r_{1}+i r_{1}: r_{2}: r_{5}: r_{4}: r_{3}: r_{1}-i r_{8}=-t: r:, n: z: n^{r^{2}+y^{2}+a^{2}+n^{2}}
$$

 which

$$
r_{1}: r_{i}=1: i, \quad r_{2}: r_{3}: r_{4}: r_{5}=r: n: z: r_{1}
$$

 be written :

 Wa a deftulte puint ont the alsolute.
 a- the equation of athy heremplat in atojective pater with the

 $x_{;}$ath Σ_{-}is then les opetial thath the one we hatre emsidered.

EXERCISES

 incolution.

('HAPTER NX
 GEOMETRY OF N DIMENSIONS

163. Projective space. We shall say that a point in n dimensions is detimed lye the ration of $n+1$ coniondinates: mamely,

$$
\begin{equation*}
r_{1}: r_{2}: r_{3}: \cdots: r_{n}: x_{n+1} \tag{1}
\end{equation*}
$$

The valute of the coüdinates may be real or imaginary, bot the imherminate ratios $1: 0: \ldots: 0: 0$ shall not be allowed. The thality of frimts thas ohtamed is a spate of n dimensions demond 安。

I straight line in $x_{r=}$ is Wefined be the equations

$$
\rho \cdot r_{-}=!n+\lambda z_{1} \quad(i=1, \ddot{\prime}, \cdots n+1)
$$

where y and z ate constants and λ is an independent rambable.

 two penints of a staight line may the used to detine it.

A phane in x_{n} is defined by the equations

$$
\begin{equation*}
\rho . r_{1}=!\prime+\lambda z_{1}+\mu \prime_{1} \cdot \quad(i=1, \because, \cdots, n+1) \tag{:3}
\end{equation*}
$$

Where !. z. ", are the wermbinates of three pointe met on the same -taight line amd λ, μ are indemement vambes. Therefore a phate

 lathe mpations

 definition follow at mane the theorems:

It is easy to see that a limear spate of $1 / 1$ dimensimbs is also hetined by a linear equation

$$
{ }_{1} r_{1}+{ }_{1} r_{2}+\cdots+{ }_{n} r_{n}+\pi_{u+1} \cdot r_{n-1}=0
$$

Which is amatognts to the equation of a fanme in there dimemsions.

 'Iherefore

In S. We shall be interested in prometive gemmetry that is, in

$$
\rho \cdot V_{1}^{k} \sum_{k=1}^{10 \cdot 1} \cdot k_{k}
$$

$$
\begin{equation*}
\rho_{1} \cdot=\phi_{1}\left(\lambda_{1} \cdot \lambda_{-} . \cdots \lambda_{1}\right) \tag{7}
\end{equation*}
$$

where ϕ_{1} are functions of r indegembent valables λ_{2}. If ϕ_{1} are

$$
\begin{aligned}
& "_{1}{ }^{1} x_{1}+"_{2}{ }^{2} r_{2}+\cdots+"_{n-1}{ }^{1} r_{n \cdot 1}=0 \text { 。 } \\
& a_{1} r_{1}+n_{2} r_{2}+\cdots+n_{n} r_{n}=0 \text {. }
\end{aligned}
$$

 in ! f prints.
 I smally the same spare maty be reperemted by ather this methent

 the explation

$$
\sum_{i=1}^{1} \sum_{1}^{n} r_{i} r_{l}=11, \quad\left(n_{n}=n_{n}\right)
$$

and :wotions of the sathe.
164. Intersection of linear spaces. ('msider two lintar paters

We have theer nases to distinguish:
 There results the theorem:
 $\neq h_{1}+r_{1}+r_{2} \cdot$
 lint ant a flant in ra.
 There rexult the thentem:

 athl two platro in M.

 an が, There menlts the thewrem:

 fonmer :ant $i_{2}+1$ pmint- af the latter.
'lhtrefor wr hatve the thentern:

('andermely, we hate the thentem:
 $i r_{1}+r_{2}=m$.

This is only a restatement of theorem III, sine by the previons section we have only to emsider the $\mathrm{s}_{\mathrm{\prime} \mathrm{\prime}}$ in whith the two henear gares lir.
similar thenrems may be prosed for the intersections of the romed paters x_{i} and $x_{0}^{\prime \prime}$. These we leate for the student.

EXERCISES

1. Show that the hyprephans in simay be considered an prints in at

2. Shew that wery eurbe of ordery is contamed in a limear spuen of

3. The quadratic hypersurface. The equation

$$
\begin{equation*}
\phi\left(r_{1}\right)-{\underset{L}{1}}_{1}^{V_{1}^{\prime}} \underbrace{}_{i} r_{i}=11, \quad\left(n_{1}=n_{1}\right) \tag{1}
\end{equation*}
$$

 - Mrfare ls ϕ.

Any lin*

$$
\rho r \quad!+\lambda:
$$

 -14ation

$$
\begin{equation*}
\sum^{1}, \mu_{1} y_{1} r_{2} 11 \tag{1}
\end{equation*}
$$

 the ferletr hitperpleme of ！＂，with respert the the quatrie．

 or lies mbirely on ϕ ．The pelar（t）then beromes the tangent
 fase denes the pelar embain the perint ！n．

It follows diredty abher from the hammaic property or from equation (t) ．that if a peome f is on the polare of a point（ 1 then \because is on the pular of 1 ．

$$
\begin{equation*}
\rho!_{1}=!_{1}^{\prime \prime}+\lambda_{2} y_{1}^{\prime}+\cdots+\lambda_{1} y_{1}^{\prime} \cdot \tag{i}
\end{equation*}
$$

The pelar hypuphates are

$$
\underline{\Delta}^{\prime \prime}\left(y^{\prime 1}+\lambda_{1}!^{\prime 2}+\cdots+\lambda_{1}!^{\prime \prime}{ }^{\prime \prime}\right) x_{2}=0 .
$$

$$
\Sigma_{1} H_{1} r_{k}-10 \quad(1,1, \because, \cdots, r+1) \quad \text { (} i,
$$

 （．3：131！）

If the enpation of the pular hyperphate is witten in the form

いい．la！い

$$
\begin{gather*}
\underline{\Sigma}_{k} r_{k}=0 \\
\mu_{n} \quad \underline{\Sigma}_{1}^{\prime \prime} \tag{7}
\end{gather*}
$$

 Whish is the dis，rimmentent of（1），dones mot raminh．＇Then if the

 mine maque values of !", which eamot all be zero. summing up, wr hatre the thememe:

If the discrimiment of ϕ dues mot remish, ater!t luint ut s", his a
 "t' "lefinitr f"int. In purticular, at retery peint "ft ϕ throer is a definite tern!ernt plathe.

Comsider now the ease in which the tiseriminant " $_{\text {th }} \mid$ Vanishes. There will then be solutions of the equations

$$
\sum_{i=1}^{n+1} u_{i k} y_{i}=0 . \quad(k=1, \because, \cdots, n+1)
$$

Any point whose coibelinates satisfy (א) lies on ϕ, since its erördinates satisfy the equation

$$
\sum_{i k}^{-1} u_{1} k_{1} y_{1} 4_{k}=0
$$

and is ralled a singular peint of ϕ.
Obvionsly, at a singular peint the tangent lịperplane is inteterminate, and in a semse athe hyperplane throngh a simgular point may le ralled a tangent hyperplame.

Equation (:) shows that any line thromgh a singular print couts the qualriar in two points coine ident with the singulat pent, whith is thas a demble peont of the quadrice. It also appats from (:) that any point of ϕ may be joined to any singular perint by a ataight lime lying entinely wn ϕ.

Any print 4 , not a singular point has a thefinite polat hyperphane

$$
{\underset{k}{k}}_{k}^{\aleph_{1}^{\prime}}\left\{\sum_{1}^{n} "_{1}^{1} y_{1}\right\}_{i} r_{k}=0
$$

and sinme this maty be writed

$$
\Sigma_{1}^{n+1} \int_{1}^{k} \Sigma_{1}^{n+1} n_{j}^{n}, n_{1}=0,
$$

it parase throush all the simgular perints.
The number of the singular perints of ϕ will dipernl upen the
 ", vanishes but mot all of its time mimms vaish, "quations (s)
have me and mily one solution, and ϕ has one singular puint. Therefore the ghatrix comsists of x^{n} " lines paning thomgh the singular print.
 or more rews manish, hat that at hast one miner with $n+1-r$ rows deses not vanish. The equations (α^{*}) then emonain $n-r+1$ independernt equations, and the singular peints therefore fom an si, ${ }^{\prime}$. The quadrice is then said to bee refilld syemetizen. The mumber r is an chusen that a mofold specialized quadric hats a single singular print, a twofold specialized quadric has a line of singular puints. and so (m).

Any א.' which is determined by the S_{r}^{\prime}, of singular penints and another ${ }^{\text {mint }} P$ on ϕ lies entirely on ϕ. This follows from the fate that all penints of the \boldsymbol{c}^{\prime} he on some line thengeh P^{\prime} and a singular peint, and, as we have sem, these lines lie entimely on ϕ. In particular, if $r=2.2$, the qumbre comsiste of phates thengh a singutar line: if $r=:$, the quadrice comsists of spaces of there dimensime thengh a singular phane: and so forth.

A grould of $n+1$ points which are two by two conjugate with
 such $(n+1)$-roms if the guadrie is monspeetializent. This may be well hy extending the peredure used in s! ! - B. By a change of con̈rlinatos the $n+1$ hypeplanes which are detemined beach set of n-pints in the $(1+1)$-gen may be weel in plate of the miginal lyperplanes $x_{1}=0$. In the mew emiodinates any point
 heperphate $r_{k}=0$ for its pmar. The equation of ϕ then beemmex

$$
\begin{equation*}
r_{1} r_{1}^{2}+r_{2} r_{2}^{2}+\cdots+r_{n} r_{n-1}^{2}=0 \text {. } \tag{!}
\end{equation*}
$$

Kow the vanishing of the disermintant and its minors demotes

 differ from zorw. If the quadrix is r-fold sureialized. it mas bus - Hewa that "ymation (!) maty still he whained. hat that ir if the romelficime samish.
 cynation (!) may be pminthe form

$$
\begin{equation*}
r_{1}^{\prime \prime}+r_{1}^{\prime} \cdots \cdots+r_{1}^{2}=11 . \tag{10}
\end{equation*}
$$

306

EXERCISES

 have the same polar hyperphane, which pases through s', , and that,
 any pint of a certain s..
2. Show that for any quadric which is r-fobl sperdatized, any tangent
 of an c_{r} lying on ϕ and determined hy the point of contart and the smonlar sirr $_{-1}$
3. Whew that if ϕ is mose than onereperialized, any hyperplate is a tament hyperplane at one or more of the peints of the simgular sir -

 hyperplates to ϕ at perints of the intersertions of ϕ with ofer of these

6. Prove that any hate throurh the vertex of a hypromer intersents it in gemmal in two stmight limes, hat that if $n=3$, it maty be watirely on the hyereme.
166. Intersection of a quadric by hyperplanes. Let ϕ he a qualric hapersurfare in n-space with the equation

$$
\begin{equation*}
\sum a_{, k}, r_{i} r_{k}=0 . \quad\left(a_{k i}=a_{1 k}\right) \tag{1}
\end{equation*}
$$

 lying in H. To prove this we have simply to mote that the expation of $I f$ may be taken as $x_{n=1}=0$ withont ehatging the form of (1).

We proced to determine the emmbitions mater whirh ϕ^{\prime} is spe-

 a simernlar print I^{\prime} of ϕ. then ϕ^{\prime} has a smernlar print at r.
 Ont print of tamernery Jenter

 Iture:

Mone gememally, let ϕ be an r-fold sperialized quatrice contaming

 we have the following thenem:

$$
\underline{V_{i}} r_{i}=0, \quad \sum b_{i} r_{i}=0, \quad(\because)
$$

wheh we thall all H_{1} and H_{2} respertively. I_{1} interserte ϕ in a

 ϕ and H_{2} aml that determined ly ϕ and H_{2}.

$$
\Sigma(1,+\lambda, r=11 .
$$

$$
\text { (} \because
$$

in which there are in semmal two hyerphanes tangent to ϕ and fixing two points of tangeng on ϕ. Hence we have the theorem:

 liys stratight limes lyin!y entirely an ϕ.

Of comrse the fixed peonts ant the staght lines mentioned do not in gerneral belong to the $\boldsymbol{N}_{n}^{(2)}$ a

We shall examine this emotigumatom more in cletail for the case in which ϕ is not specializer, and shall asimme lar repation of ϕ in the form

$$
\begin{equation*}
\sum r_{i}^{2}=0 \tag{1}
\end{equation*}
$$

Then the conelition that a heprephane of the pernoil (\because) is tatugent is

 - mftionent to determine the sene but mast be taken with amother hyperphate sections.
 When

Which express the fate that earh of the heperplames $/ I_{1}$ and I_{2}
 tanconer of eath lies ont the wher. 'Then aty we of the herer

 a sperialized quantrie with h as a simgular line.

 phanes of the lomulle define the

$$
\begin{equation*}
\left.\underline{\Sigma_{1}}\left(\mu_{1}+\lambda \mu_{1}+\mu p_{1}\right) r_{2}=1\right) . \tag{*}
\end{equation*}
$$

Smong these there are x^{1} tangent heperphane. If the equation of ϕ is in the fome (1) the tanemt heperphes are given by values of λ and μ. which satifly the equation

$$
\left.\Sigma_{(11}+\lambda_{1}^{\prime}+\mu_{r_{1}}\right)^{2}=0 .
$$

 men lyins en ϕ, and every feint of the s"' whinh we are cen-
 linne (II) ϕ.

Epmand (a) is idmatally satistied when cath of the haper-

 Therefore rach print if the ise is juined to eath peint of this

 - ingular planc.

$$
\underline{1}_{1 \prime}+\lambda_{: 11} \cdot \ldots+\lambda_{1^{\prime \prime}}{ }^{\prime \prime} \quad 11
$$

 equation as (t) the comblition that a hyperphane (11) should be tamsent is

$$
\begin{equation*}
\Sigma_{(}\left({ }^{\prime \prime}+\lambda_{1_{1}^{\prime \prime}}+\cdots+\lambda_{k-1}{ }^{\left(\alpha_{1}^{\prime \prime}\right)^{\prime}}=0\right. \text {. } \tag{12}
\end{equation*}
$$

 "hore, of comerse, λ, satisfy ($1: 2$). These pints fomm, therefore a
 therugh the バ: , which we are disensing. We have, therefore. the theorem:

 I!! strai!ght limes !!in!!! '."! ϕ.
 si: sum that eath point of cither is comberem to arh fuint of the wher bey staght lines on ϕ. It is whens that the cometition mant hoh $\because=1: 1$ -
 Sts of a pair of pints. If $n=t$ the two spaces are x_{1}^{*} and st one of whith is a curve of serond owler and the other a pair
 lince with an \therefore ar an sementen in amilar manner with

In the firs amd lan of the examples jut given we have two

 fuint if the ather by ataght lines on ϕ. The muntur of dimm-
 of ther mandra.

167．Linear spaces on a quadric．It is a familiar fant that stminhe

$$
\begin{equation*}
\rho \cdot r_{1}=\mu_{1}^{\prime \prime}+\lambda_{1!} \mu_{1}^{2}+\cdots+\lambda_{1!}^{\prime \prime} . \tag{1}
\end{equation*}
$$

エエ゙!!! ! !

and ther | $(r+1)$ |
| :---: |
| $\ddot{2}$ |

of which the first ant expers the fant that moly pime is in ϕ.
 fhate th ϕ at wath of the wher pemits．

Take any peint P_{1} wn ϕ and let T_{1} be the tangent hymerpham

in this way anl $x_{r}^{\prime \prime}$ lying on ϕ her means of r peints, the tangent

 peints which are not on x_{r-1}^{\prime}. Take $P_{r=1}$, one such point. It determines with x_{r-1}^{\prime} an \dot{c}_{0}^{\prime} lying on ϕ. The prowess mat he contimed as hong as $r<\underset{\sim}{\prime \prime}$, but not longere. Since the dimensimes of the quadrie ϕ are $n-1$, we shall write the condition for r as $r=\frac{n-1}{2}$ and state the theorem:

To find how many such linear sames lie on the quadrac, we notice that the point l_{1}^{\prime} maty be determined in $x^{\prime \prime-}$ ways, the peint r_{2}^{\prime} in x^{n-2} ways. and so on mat finally the peint $l_{r, 1}$ is detwrmined in x^{n-r-1} ways. The $r+1$ peints may therefore ber when in

The mumber of se, which pass through a lixed point may be
 may be determined in x, ways, and that in almy ser ther r peints may be chasen in $x^{\prime 2}$ ways, so that the number of different x_{r}^{\prime} through a point is $x^{\left.x^{2}-3-3 r-a\right)}$. We smm inf in the theorm:

If n is odd, the greatest value of r is " $\quad \underset{\sim}{z}$ and there are

 -panes of thene dimensime on the gumatric.

 -perciatized quadrie ϕ and shall write its "pmation in the form

$$
\mu_{i}^{*}+n_{i}^{2}+\cdots+u_{n}^{2}-r_{1}^{*}-r_{2}^{*}-\cdots \quad r_{1}^{*}-11 . \quad \text { (t) }
$$

 may be writum

$$
\begin{aligned}
& u_{1}=\left\|_{11} \cdot r_{1}+\right\|_{1, \ldots} r_{1}+\cdots+\|_{1, \ldots, 1} \cdot r_{1,1},
\end{aligned}
$$

Where the ene thinents satinly the relations

 But if onte of these variables is missimg it is char that the s", cammot
 flom ($\overline{\text { I }}$) in (4).

 of this detemanamt. Itrmee we hate the theoreme:

sumb family as (T^{\prime}) when 1 , and is of the opposite family when "二- 1. 'The combition for she intersertion of the two s. is

$$
\left[\begin{array}{llll}
u_{11}-1 & u_{12} & \cdots & u_{1,2,1} \tag{5}\\
u_{21} & u_{2,2}-1 & \cdots & u_{2, p, 1} \\
\cdot & \cdot & \cdot & \cdot \\
u_{p+1,1} & u_{p, 1,2} & \cdots & \cdot \\
u_{p+1, j+1}-1
\end{array}=0 .\right.
$$

If p is teld, equation (x) is satistied abways whent $=-1$, but is mot satistied whern $r=1$ maless other relations than (f_{s}) exist betweenthe conethiofents. If p is even, equation (x) is always satisthed when,$=1$, hut is not satistied in general when $t=-1$. Hence we hate fle lhererell:

 - hathere the form of the equation (t). The tangent hyperphe T_{1}

$$
u_{1}^{2}+n_{2}^{2}+\cdots u_{1}^{2}-r_{1}^{2}-r_{2}^{2}-\cdots-r_{n}^{2}=1 .
$$

$$
u_{1}^{2}+u_{2}^{2}+\cdots+u_{p}^{2}-r_{1}^{2}-r_{1}-\cdots-r_{1}^{\prime}=1 .
$$

 on ϕ (ant he given the rynations

$$
\begin{array}{ccccc}
u_{1} & r_{1} & \|_{\cdot} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
u_{p} & 1 & : r_{k} & \cdot & u_{1} \tag{!}\\
u_{p-k: 1} & r_{k} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array} \cdot \cdot
$$

wheme rhamering the loman of eqnition (1).
 atso contams all peints of (!), its equations redhee to the form

 these s. am he given the equations

$$
" \quad \text { ', } \cdot
$$

$$
(1: 3)
$$

 drop the primere.

 suttion- int that

$$
\begin{array}{ccccccccc}
A_{11} & 1 & \cdots & n_{1,2} & k & & & \\
\cdot & 1 .
\end{array} \quad(1: i)
$$

$$
\begin{aligned}
& "_{11} \quad \cdots "_{1, \ldots} \\
& a_{d k}=\cdot \text { • • • • . . }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{1}=d_{11} \quad r_{1}+\cdots+a_{1, \ldots-r_{1}} \quad r^{2}
\end{aligned}
$$

$$
\begin{align*}
& "_{p-2 \cdot 1}= \tag{11}\\
& { }^{\prime \prime}{ }_{i,}, \\
& 11 \cdot 1 \cdot
\end{align*}
$$

Now if f - k is an odd momber, equation (13) is ahway satistied when, $=1$: and if $\mu-7$ is an even momber, it is always satistied when, $=$ 1. Further, we motier that if ($1:$) and (10) have in

 this $\operatorname{sch}_{k \rightarrow 1}$ is on ϕ. Moreorer. $\mu-k$ is odd if p is odd and k even w if μ is even and k odd, and $\mu-k$ is eren if both μ and k are chld or if both p and k ate even.

From this we have the following results:
 where k is erim, they interseet in at least an $\boldsymbol{N}_{k, 1}$.

 where k is what, they interseret in at least an $\mathrm{r}_{2,-1}$.

This maty be pat into the following thenrem. with reference also (o) thewrent $\mathrm{JV}^{\text {: }}$

$$
n_{1}=m_{11} r_{1} . \quad n=r \quad\left(i=\because, \because_{1} \cdot \cdots, n+1\right)
$$

with $n_{n}=r= \pm 1$. Hence we have the thenema:

EXERCISES

 from that dedme the comdition

$$
" \quad 1
$$

168. Stereographic projection of a quadric in S_{n} upon S_{n-1}^{\prime}. L. ϕ

 thomgh () and mo other perm of ϕ lie in the tancent hypephate

$$
r^{2}+\ddots_{2}^{2}+\cdots+r_{1}^{2}=10 \quad 11
$$

 of ϕ atre, 1hen.

$$
\mu \cdot 1,11+\lambda, \quad(\ddot{1})
$$

$$
\begin{aligned}
& \text { p.l. } \quad 11+\lambda . \\
& \text { p. } 1 \text { i + } \lambda ., \\
& \mu 1,1+1.1 \text { : }
\end{aligned}
$$

 This detemines λ, amf the coindinates of $!$ are fomed to be

$$
\xi_{1}: \xi_{:}: \cdots: \xi_{1}: 11: \xi_{n}=r_{1}: r_{2}: \cdots: r_{n-1}: 11: i_{r_{n}}+r_{n-1} .
$$

where ξ are enïdinates of peints in Σ and $x_{\text {a }}$ ate coürdinates of
 mation between P and its projection Q in the form

$$
\begin{align*}
\rho \cdot r_{1} & =\xi_{1} \xi_{n} \cdot \\
\vdots & \vdots \\
\rho \prime_{n} & =\xi_{n} \xi_{n} \\
\rho\left(i_{n}+r_{n-1}\right) & =\xi_{n}^{\prime} . \\
\rho\left(i i_{n}-r_{n-1}\right) & =\xi_{1}^{\prime}+\xi_{2}^{*}+\cdots+\xi_{n}^{*} .
\end{align*}
$$

 A-finte prim !? exapt that the peint 1 gives an indermanate ! (on the berles $\xi=11$. Whinh is. therefore the equation of π in \leq

 thengh 1\%. Therefore

$$
\begin{equation*}
\xi=11 \cdot \xi^{2}+\xi+\cdots+\xi=1=0 \tag{t}
\end{equation*}
$$

 any puint ! whirh is on π hat mot an! gives the detinte perint 1 .

1.....nne ly the tranformatinn (:)

$$
\rho \xi=\xi_{1}+\mu_{1} \xi_{1}+\cdots+\mu_{k} \xi^{-1} .
$$

 10n !e. Therefore wa say:

 wi ϕ. If. hownere, the intersection of two = lix on S2, the two

 -1 that wr hatre the thentem:

In a similar manner the question of the intersertions of lintar
 - ज +

$$
{ }_{11} 1_{1}=" 1_{1} r_{2}+\cdots+{ }_{1 n} r^{r}+11 \ldots r_{1}{ }_{n} 11 .
$$

This is in semeral a $\underbrace{}_{n-1}$ which contamis Ω, hat if $i_{n}+{ }_{n+1}=0$, it oplits up inte the lyperplane π and a genemblyperpater γ. Hence the themem:

EXERCISES

169. Application to line geometry. Simer line roüdinates consin of six homogremeoms variables commeted be a phadratic rela-

 geometry some of the someral results we have whtamed. In su

 "pint, " line." and "phan" for the proner contignations in s. Let ϕ be the quatrit whene equation is the fombamental redation

 (mmmon. On the other haml. a hamble of limes amd at hate af

 of lines and a flate of line hate ome line in entmont they will

A lintar line complex is an sem fomed by the intersection of ϕ and an $x_{4}^{\prime \prime}$. If the $\boldsymbol{x}_{1}^{\prime}$ is tangent to ϕ, the eomplex is sperial and eon-
 -perial limear comples in line gexnmetry comsists, therefore of s. perneils of lines combathing a fixed line.
 seretion of ϕ and "wo x_{4}^{\prime}. 'Therefore it ponsists in semeral of lines tath of which belongs to two fencils eontaining, respertively, one of two fixed lines. When the two tixed lines interseet, the eomgroentere splite "p into a bumdle of lines and a plane of lines, with a perneil in eommon. That shogests the theorem that on ϕ, if the

A linear series is an $S_{1}^{* 2}$ letermined by the intersertion of ϕ and three s. From the gemeral theory we ser that the series eonsists of x^{1} lines, eath of which hes in a pencil containing each of x^{1} fixad lines. It therefore consists in gemeral of x^{1} lines interseding another x^{1} lines. We leave to the student the task of considering the sperial cases of a line series.

A linear eomplex

$$
\begin{equation*}
a_{1} r_{1}+a_{2} r_{2}+\cdots+a_{n+1} x_{n+1}=0 \tag{1}
\end{equation*}
$$

is futly determined beve the matios $a_{1}: a_{2}: \ldots:{ }_{n+1}$, which may be taken as the eoordinates of the eomplex, and we maty have a geometry in which the line complex is the eloment.

The quantities $a_{1}: a_{2}: \cdots: a_{n+1}$ are also the a oïrdinates of a peint in sta which is the pole of the hyperpane (1). Therefore the print π_{i} is not on the quatrie ϕ maless the eomples is sperial. An
 morespome to the peints in whiel the polar (1) of the print " intaraets ϕ. If sif is on ϕ, the emmplex is spectial and may be replated by its ax is suas mot tomentiot the previons statement

 the wher. Fram thin it follows at mere that if me of the anmplases
is special. its axis is a line of the other; so that if hoth are special, their axes intersect, and consersely. In case neither romphex is
 lowk for wher geometric properties of complexes in insolution.

In sis the eonerdinates $A_{\text {a }}$ and b_{i} have a dualintic signiticance. On the whe hand they are coirrdinates of two $\stackrel{s}{n}^{\prime \prime}$: on the other hame they are coürdinates of two hyerplanes, the polans of these prints.
 layerplanes a pencil of heperplanes which have an sé in common. The pencil of x_{0}^{\prime} contains two $\mathrm{S}_{\prime \prime}$ on ϕ, and the pencil of heperphanes contans two hyperplanes tangent to ϕ. It is then ardent that two coinglexes are in incolution when the tu'o s. in s. which represent them wre hurmomic congugutses with respert to the quedric ϕ, or. what is the same thing, when the two hyperphate defining the complexes are hamonic conjugates to the two tangent hyperphes to ϕ which are contaned in the pencil detined be the two complexes.

It is clear that in any pencil of complexes the relation hetween a complex and its involutery complex is ome-to-ome.

If we consider a tixed comples a_{2}, all complexes in involution to it are represented by points in an rí. Which is the pelar hyperphane of a_{i} with respect to ϕ.

This relation can be ereneralized. Let sex be a linear space of points in s.s. and let \boldsymbol{x}_{1-1} be the conjugate polar sace with respect to ϕ. so that any peint in,$_{k}^{\prime \prime}$ is the harmonic compurate with respert th ϕ of any point in S_{+-k}^{\prime}. We hatre, then, two series of complexes. cach of which is in involution with each one of the other serics. The penints in which $\boldsymbol{r}_{k}^{\prime}$ intersect ϕ are special complexes. Tha in
 been shown abowe. In wher words, the terx at the syerial compler,

 (1) ther stmente.

Fon example, comsinder the pencil of complexes $n_{1}+\lambda k$. in into-

 commone ant thest are the ases of the sperial complexes of the

of the pencil. . Igain, comsider the bundles of comptexes $n_{1}+\lambda h_{1}+\mu$, and $\varepsilon_{0}+\lambda^{\prime} f+\mu^{\prime} y_{1}$ in involution. The complexes of either humfle have in emmen the x^{1} straight lines of a regulus which are the axes of the sereciat complexts of the of her handle.
 linear line complex geses inte a linear line complex, and any linear series of compleses enes inter anther and series. If, in addition, the guablice ϕ is transformed into itself, straght lines in x_{s} are tranformed into straight lines. and any x_{2}^{\prime} on ϕ is transormed inte anmether x_{2}^{\prime} on ϕ. But as there are two systems of $x_{2}^{\prime \prime}$ on ϕ. the transformation may transorm andere either into one of the same sotem or into ome of the other system. In the first case. pmint-
 are tranformed into planes. We have, acoordingly, the theorem:
 a mellineation or at anrelation in \dot{S}_{3}.

EXERCISES

 in $\stackrel{y}{\circ}$.
170. Metrical space of n dimensions. We have been ansiltering -pare in which a point is detmed by the mios of homoternome varabhes. We may. howerer, omsider eqmally well a spare in

$$
u_{1}=\frac{r_{1}}{t}, \quad u_{2}=\begin{array}{rll}
r_{2} \tag{1}\\
t
\end{array} \quad \cdots \quad u_{n}=r_{t} .
$$

is sabl to detime a definite peint at infinty. We have, therefore. a sperial case of projective space with a minum haperplate $t=0$.

We may deftere a distance in a manner amaterons to that uned in three dimensions, by the equation

$$
d^{2}=\left(n_{1}^{\prime}-u_{1}\right)^{2}+\left(n_{2}^{\prime}-\|_{2}\right)^{2}+\cdots+\left(\left\|_{n}^{\prime}-\right\|_{n}\right)^{2}
$$

or. in homugeneons form,

$$
I^{2}=\frac{\left(u_{1}^{\prime} t-u_{1}^{\prime} t^{\prime}\right)^{2}+\left(u_{2}^{\prime} t-u_{2} t^{\prime}\right)^{2}+\cdots+\left(u_{n}^{\prime} t-\|_{v^{\prime}}^{\prime}\right)^{2}}{t^{2} t^{\prime 2}} .
$$

From this it aplears that the distane hetween two prints an tre infinite only if tor t is zero. Conversely. with the exerption noted below, a peint for whith $t=0$ is at an intinite distance from ans point for which $t^{\prime}=0$. Therefore $t=0$ is called the helperphene at intinity.
()n the heperytante at infinity the coumdinates are projective coindinates in $x_{n \rightarrow 1}$ definted by the ratios $r_{1}: x_{z}: \ldots r_{n}$.

An exception to the statement that promts on lay lypeplane at
 plane weurs for points on the lochs

$$
\begin{equation*}
t=0, \quad r_{1}^{2}+r_{2}^{2}+\cdots+r_{n}^{2}=0 . \tag{1}
\end{equation*}
$$

since the distane of ans jomint on this lowe from any ofler fuint
 surface in the hyperplane at intinity, is called the wherlute.
 semeratizations of these of threeremmensmal ybate that a mere statement of them is suffiefent.
 primt. Its "pration is

$$
\left(r_{1}-n_{1}\right)^{2}+\left(r_{2}-n_{2}\right)^{2}+\cdots+\left(r_{n}^{2}-n_{n}\right)^{2} \quad \text {, } \quad \text { (i) }
$$

 (14) uther fuint at intinity.

I straight line may he detined hy her mations

$$
\frac{r_{1}-n_{1}}{l_{1}} r_{2}^{l_{2}} "_{2} r_{n}^{\prime \prime}
$$

 mine the diretton of the lime diretion heme that prowty whels

 ration of the fomb perints is

$$
1_{1} I_{1}^{\prime}+1 I_{2}^{\prime}+\cdots+1 I^{\prime}
$$

$$
1\left(1+1+1+\cdots+1 \frac{1}{n}\right), 1_{1}^{\prime 2}+1_{2}^{\prime}+\cdots+1_{n}^{\prime}
$$

We thall detine this as the cosint of the athere between the two linm: mamels.

$$
\operatorname{mos} \theta=\frac{\sum^{\prime \prime}}{\sqrt{\sum} \sqrt{\prime \prime}} .
$$

In partionlar two lines ame perpentionlar whon

$$
l_{1} l_{1}^{\prime}+l_{2}^{\prime}+\cdots+l_{n}^{\prime} I_{n}^{\prime}=11 .
$$

$$
12+12+\cdots+12=11 .
$$

In that ratse the distane betwern ally two printio on the lime is

$$
{ }^{2} r_{1}+n_{1} r_{2}+\cdots+n_{n} r+r_{n} t=0
$$

$$
\pi_{1}+r_{r}=\ldots+n r-0 \text {. }
$$

and any stamgh line with the direetion $\mu_{1}: d_{2}: \ldots 0_{n}$ is said to the perpentionlar to the hyperphane. In fact, from the detintion of perpentionlar lines atreaty given, has line is perpentionlar th ang line in the heperplane and romersely.

Two hyperphes are perpendienlan when the pehe of the trawe at infinity of cither comains the pele of the wace of the where Therefore the condition for two perpendientar hy peplates is

$$
"_{1}^{l_{1}}+"_{2}^{l_{2}}+\cdots+w_{n} l_{n}=1 .
$$

It follows that the n hyperphes

$$
r_{1}=0, \quad r_{2}=0, \ldots, \quad r_{n}=0
$$

are mathally perpemdientar heperphans interserting at 1. Themgh (1) or any puint of space pass an intinite mamber of surh mutually ortheromal hyperphanes: for as seen ins 165 , we may find in $t=11$ an infinite nomber of coindinate ststems suth that the ahsolute. retains the form $\Sigma r_{i}^{R}=0$ and the lines drann from 1 tw the print $r_{i}=0, r_{k}=0$ ($k \neq i$) wemme the hypephas momed.
 $r_{n}=0$. The countinates in this hypeplame are $r_{1}: r_{2}: \ldots \cdot r_{n-1}: t$, aml its ahmolute is $t=11, r_{1}^{2}+r_{2}^{2}+\cdots+r_{n-1}^{2}=11$.

 if they intersect only at intinity amb if the sertion of , at intinisy

 Hence.

 apaces which intersent at intinity ant menther else. This womb hand to a serios of theorems of which there in s.ixe are examples. but we shall mot pursue this lime of invertgation.

Two linare apaces will be defined as comphetely perpendicular

 the hyperpance at intinity in $x_{r}^{\prime \prime}$ and x_{r}^{\prime}. rexpectivels, it follows that the newesary and sufticiont wondition hat se shand be com-
 Palar pate of x_{0}^{\prime} with respet to the ahombte, when, of conve.
 to the abselute.

 Pame at intinty x_{r}^{\prime}, is detemined, and the recipmal pelar space

 in Mr.

 S 16it, hat we shall mot din this.

as the heperplane at intinty in s_{n}. Then π is the hyperplane at intinity in $\stackrel{c}{n}$, amd Ω is the absolute. We lave at one the the orem:

 fomation on ϕ hy wheh hyerphan sertions go into hyperphanes. There is a romespmbing tamsfomation in x_{n-1} he which a heyperplane or a hypersheregoes into either a hyperpane or a hyperspere. If the collineation in x_{n} leaves (1) asell as ϕ invariant, hyperplanes of S_{n}, are transomed into heperplanes, and the transformation is a collineation. But the transfomation in ses leaves the tangent hyperplane at "mollanged, and therefore the correspondGug transomation in \dot{x}_{n-1} leaves the absolute molanged. Hence,

 which wie thatefiate metrical tromstiontmations.

 of ϕ. and amother set (ξ) for the wints of $\mathrm{S}_{\text {" }}$. hat warly the (ründinates r_{i} may also be beed to determine pmints in \dot{c}_{n}.

Wre shall have then, for the peints of in $1^{\prime \prime}+1$ homegremoms reiibedinates comberted he a phadratio relatiom. amb such that a linear eqnation between them reprement: a hepersphem with the

171. Minimum projection of S_{n} upon S_{n}. (imsilem in di. with

$$
\left.\left(r_{1}-n_{1}\right)^{2}+\left(r_{2}-n_{0}\right)^{2}+\cdots+\left(1-r_{1}\right)^{2}-1\right)
$$

The section of this her the herplater or 11 is

 ${ }^{\prime \prime}$, phe imatinaty.

 himber shere eroindinates of mionted heperspheres in as bon

 therefore:

EXERCISES

 a hyper-phate in x

\therefore	${ }^{\prime}$	S_{3}
I puinit mb ¢	1 print.	A pillume
1 hisperlinme - - -	1 - $11+2 \mathrm{l}$.	I - phere manples.
1 -nctimut ϕ hy	1 funni phame.	
		-mmathx.
I lumamman lime	I minimumaline.	
$\cdots \phi$.		- Hheres.
I minimum flan"	I minimmmat plam	I lmand! 1 f lati-
1116.	of s-uentml limul.	-rut -phteres.
I -ution of ϕ h	A hiproratutare of	I -phare emuplas
1:17.	omber $\%$	ut molle !
I mimimman chave		I serim of $\boldsymbol{\sigma}^{1}$
$\square 11 \quad$ ¢		
		is titherat in thr 1 (1)

REFERENCES

 on ef "! rat irn.

$1, \ldots, 1,1.1-7$


```
    - S.NV, \\\\1. I-m:
```


バリジ

（Hhernambers reforto patises）

Alamlate，：300

Abime thantmontima，Jaz

13心．いf matre，x

 \therefore－14t－1Heres，3．1

（＇ircle cumblinatas．171．17T
（ifele puints at intinity，son．10．s
＇Waramt＇s tyuation， 103

 （1）－ $14+1$－$: 314$

（omjugatic，lammonic，18

（＇mas ratio．lif

（rulle 17：
（＂yわれは，1） 294

（1）eforent，－ $24!4$

1）examerne thenton if．45

 119x．：3x

Dilatimm．liti

 111

 ：34． 110

```
1:Migい禾. 224
```


limate"
Hexamherinal comblimates. inti
 1f. 4!! Tif
11-nicyele. 114

 41t: 1"1at, : an:

Hypuyce.114
lmanimaty Hobuty. \because

Imaminary Mane. J-

lu:ariant. i

1.1m.

11.-1...117. 111t

M:1 $\because=1: 10 \times$

n-line and n-point, it
Non-linclideansemmetry, 112
Sull sphere. 142

 20.520 : of line (omplex, enngruente. athl seritas. : \%os
(rientation of - Fherto. : It

Wrthownal -pheror. 267. 256, 3/1
Wembtins Mant. 20
l'atplls. thentem of. ta

faralls thempem, \therefore.
Pralal thandmanation, $]:=1$

 mombuntrity. :3.5
lalamitity,
 1-ti: ut limes, :3T

Phlar, with r-aped th failit pitir, 24:

amplex，215：with revinel th plat－

 1］－：minimmm，tl！

Prajentisty， $1: 1,20$
1－atherirate．11：；

（ymanhateral，cmathete． 44
r－that，ish
lanllal axis．gtan
Ranlical remter，2tis

 115日15．．in
lirthertinn． 1114

Rrlativity， 11 ！
Ritunammian－
King－Iatian．2T．．

जhe（t it platro．12

 f：are．24．

Thum，2－1 12

Tran－latin！。11：；
 （1）

[^0]:

[^1]: 111 .
 1 !

[^2]:

[^3]:

[^4]: in the theny of redatisty. ('t. Wihan am Lewis." Ther sance-Thme Manfond
 Vn, XLVHI, Nい. 11.

[^5]:

[^6]: - S-ill Sternamatr. J. ati.

[^7]: " К

